Check-in [52ad30fdda]
Not logged in

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:add tcl upstream changes
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 52ad30fdda3660437f6819c725cab391a3ba9d3b
User & Date: chw 2019-06-11 09:10:40
Context
2019-06-11
09:12
add twv to vanillawish build scripts plus some cleanup in undroidwish build scripts check-in: 4ef9501cfc user: chw tags: trunk
09:10
add tcl upstream changes check-in: 52ad30fdda user: chw tags: trunk
08:51
add experimental webview (twv) check-in: d6cf07a51c user: chw tags: trunk
Changes

Changes to jni/tcl/doc/expr.n.

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
197
198
199
200
201
202
203


204
205
206
207
208


209
210

211
212
213
214
215

216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
...
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
...
387
388
389
390
391
392
393
394

395
396

397
398
399
400
401
402
403
404
405
406
407
408
409















410
411
412
413
414
415
416
For some examples of simple expressions, suppose the variable
\fBa\fR has the value 3 and
the variable \fBb\fR has the value 6.
Then the command on the left side of each of the lines below
will produce the value on the right side of the line:
.PP
.CS
.ta 6c
\fBexpr\fR 3.1 + $a	\fI6.1\fR
\fBexpr\fR 2 + "$a.$b"	\fI5.6\fR
\fBexpr\fR 4*[llength "6 2"]	\fI8\fR
\fBexpr\fR {{word one} < "word $a"}	\fI0\fR
.CE
.SS OPERATORS
.PP
................................................................................
Bit-wise OR.  Valid for integer operands only.
.TP 20
\fB&&\fR
.
Logical AND.  Produces a 1 result if both operands are non-zero,
0 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.


.TP 20
\fB||\fR
.
Logical OR.  Produces a 0 result if both operands are zero, 1 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.


.TP 20
\fIx\fB?\fIy\fB:\fIz\fR

.
If-then-else, as in C.  If \fIx\fR
evaluates to non-zero, then the result is the value of \fIy\fR.
Otherwise the result is the value of \fIz\fR.
The \fIx\fR operand must have a boolean or numeric value.

.PP
See the C manual for more details on the results
produced by each operator.
The exponentiation operator promotes types like the multiply and
divide operators, and produces a result that is the same as the output
of the \fBpow\fR function (after any type conversions.)
All of the binary operators but exponentiation group left-to-right
within the same precedence level; exponentiation groups right-to-left.  For example, the command

.PP
.CS
\fBexpr\fR {4*2 < 7}
.CE
.PP
returns 0, while
.PP
................................................................................
and
.QW \fB[b]\fR
before invoking the \fBexpr\fR command.
.SS "MATH FUNCTIONS"
.PP
When the expression parser encounters a mathematical function
such as \fBsin($x)\fR, it replaces it with a call to an ordinary
Tcl function in the \fBtcl::mathfunc\fR namespace.  The processing
of an expression such as:
.PP
.CS
\fBexpr\fR {sin($x+$y)}
.CE
.PP
is the same in every way as the processing of:
................................................................................
.CS
set a 3
set b {$a + 2}
\fBexpr\fR $b*4
.CE
.PP
return 11, not a multiple of 4.
This is because the Tcl parser will first substitute \fB$a + 2\fR for

the variable \fBb\fR,
then the \fBexpr\fR command will evaluate the expression \fB$a + 2*4\fR.

.PP
Most expressions do not require a second round of substitutions.
Either they are enclosed in braces or, if not,
their variable and command substitutions yield numbers or strings
that do not themselves require substitutions.
However, because a few unbraced expressions
need two rounds of substitutions,
the bytecode compiler must emit
additional instructions to handle this situation.
The most expensive code is required for
unbraced expressions that contain command substitutions.
These expressions must be implemented by generating new code
each time the expression is executed.















When the expression is unbraced to allow the substitution of a function or
operator, consider using the commands documented in the \fBmathfunc\fR(n) or
\fBmathop\fR(n) manual pages directly instead.
.SH EXAMPLES
.PP
Define a procedure that computes an
.QW interesting







|







 







>
>





>
>

<
>





>








>







 







|







 







|
>
|
|
>













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
...
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
...
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
...
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
For some examples of simple expressions, suppose the variable
\fBa\fR has the value 3 and
the variable \fBb\fR has the value 6.
Then the command on the left side of each of the lines below
will produce the value on the right side of the line:
.PP
.CS
.ta 9c
\fBexpr\fR 3.1 + $a	\fI6.1\fR
\fBexpr\fR 2 + "$a.$b"	\fI5.6\fR
\fBexpr\fR 4*[llength "6 2"]	\fI8\fR
\fBexpr\fR {{word one} < "word $a"}	\fI0\fR
.CE
.SS OPERATORS
.PP
................................................................................
Bit-wise OR.  Valid for integer operands only.
.TP 20
\fB&&\fR
.
Logical AND.  Produces a 1 result if both operands are non-zero,
0 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.
This operator evaluates lazily; it only evaluates its second operand if it
must in order to determine its result.
.TP 20
\fB||\fR
.
Logical OR.  Produces a 0 result if both operands are zero, 1 otherwise.
Valid for boolean and numeric (integers or floating-point) operands only.
This operator evaluates lazily; it only evaluates its second operand if it
must in order to determine its result.
.TP 20

\fIx \fB?\fI y \fB:\fI z\fR
.
If-then-else, as in C.  If \fIx\fR
evaluates to non-zero, then the result is the value of \fIy\fR.
Otherwise the result is the value of \fIz\fR.
The \fIx\fR operand must have a boolean or numeric value.
This operator evaluates lazily; it evaluates only one of \fIy\fR or \fIz\fR.
.PP
See the C manual for more details on the results
produced by each operator.
The exponentiation operator promotes types like the multiply and
divide operators, and produces a result that is the same as the output
of the \fBpow\fR function (after any type conversions.)
All of the binary operators but exponentiation group left-to-right
within the same precedence level; exponentiation groups right-to-left.  For example, the command
.PP
.PP
.CS
\fBexpr\fR {4*2 < 7}
.CE
.PP
returns 0, while
.PP
................................................................................
and
.QW \fB[b]\fR
before invoking the \fBexpr\fR command.
.SS "MATH FUNCTIONS"
.PP
When the expression parser encounters a mathematical function
such as \fBsin($x)\fR, it replaces it with a call to an ordinary
Tcl command in the \fBtcl::mathfunc\fR namespace.  The processing
of an expression such as:
.PP
.CS
\fBexpr\fR {sin($x+$y)}
.CE
.PP
is the same in every way as the processing of:
................................................................................
.CS
set a 3
set b {$a + 2}
\fBexpr\fR $b*4
.CE
.PP
return 11, not a multiple of 4.
This is because the Tcl parser will first substitute
.QW "\fB$a + 2\fR"
for the variable \fBb\fR,
then the \fBexpr\fR command will evaluate the expression
.QW "\fB$a + 2*4\fR" .
.PP
Most expressions do not require a second round of substitutions.
Either they are enclosed in braces or, if not,
their variable and command substitutions yield numbers or strings
that do not themselves require substitutions.
However, because a few unbraced expressions
need two rounds of substitutions,
the bytecode compiler must emit
additional instructions to handle this situation.
The most expensive code is required for
unbraced expressions that contain command substitutions.
These expressions must be implemented by generating new code
each time the expression is executed.
.PP
If it is necessary to include a non-constant expression string within the
wider context of an otherwise-constant expression, the most efficient
technique is to put the varying part inside a recursive \fBexpr\fR, as this at
least allows for the compilation of the outer part, though it does mean that
the varying part must itself be evaluated as a separate expression. Thus, in
this example the result is 20 and the outer expression benefits from fully
cached bytecode compilation.
.PP
.CS
set a 3
set b {$a + 2}
\fBexpr\fR {[\fBexpr\fR $b] * 4}
.CE
.PP
When the expression is unbraced to allow the substitution of a function or
operator, consider using the commands documented in the \fBmathfunc\fR(n) or
\fBmathop\fR(n) manual pages directly instead.
.SH EXAMPLES
.PP
Define a procedure that computes an
.QW interesting

Changes to jni/tcl/generic/tclAssembly.c.

509
510
511
512
513
514
515

516
517
518
519
520
521
522
 * The instructions must be in ascending order by numeric operation code.
 */

static const unsigned char NonThrowingByteCodes[] = {
    INST_PUSH1, INST_PUSH4, INST_POP, INST_DUP,			/* 1-4 */
    INST_JUMP1, INST_JUMP4,					/* 34-35 */
    INST_END_CATCH, INST_PUSH_RESULT, INST_PUSH_RETURN_CODE,	/* 70-72 */

    INST_LIST,							/* 79 */
    INST_OVER,							/* 95 */
    INST_PUSH_RETURN_OPTIONS,					/* 108 */
    INST_REVERSE,						/* 126 */
    INST_NOP,							/* 132 */
    INST_STR_MAP,						/* 143 */
    INST_STR_FIND,						/* 144 */







>







509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
 * The instructions must be in ascending order by numeric operation code.
 */

static const unsigned char NonThrowingByteCodes[] = {
    INST_PUSH1, INST_PUSH4, INST_POP, INST_DUP,			/* 1-4 */
    INST_JUMP1, INST_JUMP4,					/* 34-35 */
    INST_END_CATCH, INST_PUSH_RESULT, INST_PUSH_RETURN_CODE,	/* 70-72 */
    INST_STR_EQ, INST_STR_NEQ, INST_STR_CMP, INST_STR_LEN,	/* 73-76 */
    INST_LIST,							/* 79 */
    INST_OVER,							/* 95 */
    INST_PUSH_RETURN_OPTIONS,					/* 108 */
    INST_REVERSE,						/* 126 */
    INST_NOP,							/* 132 */
    INST_STR_MAP,						/* 143 */
    INST_STR_FIND,						/* 144 */

Changes to jni/tcl/generic/tclInt.h.

3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclDivOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileDivOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclLessOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileLessOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclLeqOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileLeqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclGreaterOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileGreaterOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclGeqOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileGeqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclEqOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileEqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclStreqOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileStreqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);

MODULE_SCOPE int	TclCompileAssembleCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);







<
<
<



<
<
<



<
<
<



<
<
<



<
<
<



<
<
<







3929
3930
3931
3932
3933
3934
3935



3936
3937
3938



3939
3940
3941



3942
3943
3944



3945
3946
3947



3948
3949
3950



3951
3952
3953
3954
3955
3956
3957
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclDivOpCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
MODULE_SCOPE int	TclCompileDivOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileLessOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileLeqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileGreaterOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileGeqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileEqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);



MODULE_SCOPE int	TclCompileStreqOpCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);

MODULE_SCOPE int	TclCompileAssembleCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);

jni/tcl/library/msgs/ja.msg became a regular file.