

Bluetooth 4.0

- aka Bluetooth Smart, Bluetooth Low Energy, BLE
- supported on Android \geq 4.3
- rapid build-up of simple links
- to communicate with sensors/actors
- designed to have very low power requirements
- builds on Generic Attribute Profile (GATT)

Generic Attribute Profile (GATT)

- Service: collection of characteristics
- Characteristic: attribute containing a single logical value (e.g. temperature) described by zero or more descriptors
- Descriptor: attribute(s) describing a characteristic
- Discovery: facility to obtain a list of all services, characteristics, and descriptors of a device
- Notification: optional property of a characteristic to send unsolicited message on data change or periodically
- Scanning: detection of remote BLE devices with their friendly (human readable) name

Generic Attribute Profile (GATT) (cont.)

- Objects (services, characteristics, descriptors) are identified by 128 bit UUIDs and carry certain meta data like read/write type, data type, permissions etc.
- Some descriptors are predefined, e.g.

00002902-0000-1000-8000-00805F9B34FB

to enable or disable notifications by writing the 16 bit value 0×0001 or 0×0000 in little endian format, respectively.

• A rule to abbreviate UUIDs: write the first 32 bits or second 16 bits of the 128 bit UUID (00002902 or 2902 in the example above)

Android BLE framework

- android.bluetooth.BluetoothAdapter: class to deal with the local Bluetooth interface, provides a callback for results of scanning for remote BLE devices
- android.bluetooth.BluetoothDevice: represents a remote Bluetooth device (which can be a BLE type device)
- android.bluetooth.BluetoothGatt: provides the facilities to connect to and to communicate with BLE devices
- android.bluetooth.BluetoothGattService: represents a GATT service
- android.bluetooth.BluetoothGattCharacteristic:represents a GATT characteristic
- android.bluetooth.BluetoothGattDescriptor:represents a GATT descriptor
- android.bluetooth.BluetoothGattCallback: an abstract class to report GATT events back to the application

AndroWish's ble command

AndroWish's ble command

- Connection setup and data exchange is event driven and asynchronous.
- Right after logical connection setup to a BLE device an automatic discovery is performed by the Java glue in order to learn the services, characteristics, and descriptors of the BLE device.
- In contrast to Android's android.bluetooth.* classes there's a single callback for all types of events which receives the event type as a single word and a dictionary with data depending on the type of the event, e.g.

```
proc callback {event data} { ... }
```

- A read operation is asynchronous, i.e. schedules the read. Actual data is reported in the callback.
- A write operation is asynchronous, too, i.e. the completion of the write is reported in the callback.

ble minor commands (overview)

Minor command	Description			
abort/begin/execute	Handling of write transactions			
close	Close a BLE handle (for both, connection and scanner)			
connect	Connect to a BLE device returning a connection handle			
disable/enable	Enable and disable notifications of a characteristic			
disconnect/reconnect	Disconnect and reconnect to BLE device			
dread/dwrite	Read and write descriptors			
read/write	Read and write characteristics			
scanner	Obtain a BLE handle for remote device scanning			
start/stop	Start and stop scanning for remote devices			
info/callback	Obtain information on BLE handle(s)			
userdata	Arbitrary user data associated with BLE handle			
getrssi	Get remote signal strength indication of BLE device			
services/character- istics/descriptors	Obtain information on device services, characteristics and descriptors			
equal/expand	Operations on UUIDs			

ble command (documentation)

19.8	Home	Downloads	Timeline	Files	Branches	Tags	Tickets	Wild No.	Login
									(ing) (1007) (10
Name									
Die - viter	t at but	outh Low Energy (B(E) devices.	Regimes	Andread 4.3 or	tignet.			
Synop	sis								
	mand inglines								
Descr	ption								
This come	and to used to	dear with Blueton	th Low Energy	(84) 4	rences. The legal			ay 54 45	breviated) are:
	April 14								
		write transaction of an integer indice						earlier b	W B tive transmith
ile beats	tand):								
		saction on the Bu r indicating succes					ried earlier to		outer (protect.
Die teille	th ballot in	elline el							
		patient is provided of caliback function						netten st	entited by issues
the stars	president loss that	and and south							
core peri	ection taxative	haracteristics of th . The list to layed effect, and write ty	out as a table	with the r	five columns on	aractarius	c WilD, chara	Internetic I	initarice number,
ale street	Annalis								
Dis	es the BLE co	nection identified	By Junite M	ch mas of	Maned earlier t		uneren Brita		command.
and Versee		Course officers							

A man page for the ble command in AndroWish can be found on

http://www.androwish.org/index.html/wiki?name=ble+command

ble command (costs)

- Java glue code (tk.tcl.wish.BLEClient) needs about 12 kByte Java byte code
- Native code (implementation of the ble command in C) needs about 12 kByte machine code (ARM) and 21 kByte machine code (x86)
- Total costs: about 45 kByte uncompressed

Steampunk: the Smart Bulb

- LED color bulb controlled over Bluetooth Low Energy
- CMYK color model
- various built-in presets incl. "Disco" mode
- lamp is controlled by a single characteristic consisting of about 16 byte of data
- full demo available in AndroWish's source tree as

.../assets/ble1.0/demos/lumen.tcl

Detect the bulb

```
proc scan {event data} {
    if {$event eq "scan"} {
        dict with data {
            if {[string match "iSmartLight*" $name]} {
                # found it, connect to it
                ble connect $address connect_step_1
                # close the scanner handle
                ble close $handle
            }
ble start [ble scanner scan]
```

Connect the bulb (step 1)

```
proc connect_step_1 {event data} {
    if {$event eq "connection"} {
        dict with data {
            if {$state eq "connected"} {
                # connection setup magic in a write transaction
                ble begin $handle
                set magic1 [binary format H* \
                    "08610766a7680f5a183e5e7a3e3cbeaa8a214b6b"]
                ble write $handle FFF0 0 FFF1 0 $magic1
                set magic2 [binary format H* \
                    "07dfd99bfddd545a183e5e7a3e3cbeaa8a214b6b"]
                ble write $handle FFF0 0 FFF1 0 $magic2
                ble execute $handle
                ble callback $handle connect_step_2
            } elseif {$state ne "discovery"} {
                # fallback to scanning
                ble close $handle
                ble start [ble scanner scan]
            }
        }
    }
}
```

Connect the bulb (step 2)

```
proc connect_step_2 {event data} {
    if {$event eq "transaction"} {
        dict with data {
            # trigger initial read of value
            ble read $handle FFF0 0 FFF1 0
            ble callback $handle connected
    } elseif {$event eq "connection"} {
        dict with data {
           if {$state ne "connected"} {
                # fallback to scanning
                ble close $handle
                ble start [ble scanner scan]
            }
        }
   }
```

Callback when connected

```
proc connected {event data} {
    if {$event eq "characteristic"} {
        dict with data {
            if {[string match "*FFF1-*" $cuuid]} {
                # store value in handle's userdata for later
                ble userdata $handle $value
            }
        }
    } elseif {$event eq "connection"} {
        dict with data {
            if {$state ne "connected"} {
                # fallback to scanning
                ble close $handle
                ble start [ble scanner scan]
            }
        }
    }
```

Turn the bulb on or off

```
proc bulb {on} {
   # we should have only one handle at any one time
   set data [ble info [ble info]]
   dict with data {
       if {$state eq "connected"} {
           set value {}
           binary scan [ble userdata $handle] H* value
           if {[string length $value] > 0} {
                                                                       if {$on} {
                   set value [string replace $value 0 9 "01dfd99bb5"]
               } else {
                   set value [string replace $value 0 1 "00"]
               }
               set value [binary format H* $value]
               if {[ble write $handle FFF0 0 FFF1 0 $value]} {
                   # trigger read back of value
                   ble read $handle FFF0 0 FFF1 0
                   # done, success
                   return 1
               }
                                               What an embarrassment!
           }
       }
                                               Demo failed initially for unknown reasons.
                                               After many powercycles the bulb suddenly
   # not done
   return 0
                                               allowed to be remote controlled.
}
```

clock format [clock seconds] -format "%Q"

The mission: build a Tricorder

Tricorder sensor component

Texas Instruments CC2541 SensorTag Development Kit

- SoC based on 8051 MCU with integrated Bluetooth LE connectivity
- many sensors added on the PCB: IR temperature, humidity, pressure, accelerometer, gyroscope, magnetometer

SensorTag block diagram

Source: http://processors.wiki.ti.com/index.php/SensorTag_User_Guide

SensorTag UUIDs (excerpt)

Sensor	UUID	Format
IR Temperature	AA01 (value) AA02 (config)	2 * 16 bit little endian 1 * 8 bit
Accelerometer	AA11 (value) AA12 (config)	3 * 8 bit 1 * 8 bit
Humidity	AA21 (value) AA22 (config)	2 * 16 bit little endian 1 * 8 bit
Magnetometer	AA31 (value) AA32 (config)	3 * 16 bit little endian 1 * 8 bit
Barometric Pressure	AA41 (value) AA42 (config)	2 * 16 bit little endian 1 * 8 bit
Gyroscope	AA51 (value) AA52 (config)	3 * 16 bit little endian 1 * 8 bit
Buttons	FFE1 (value)	1 * 8 bit

Enabling sensors and notifications

Snippet shows how ble enable commands for characteristics having notification property are accumulated during discovery.

```
characteristic {

if {($state eq "discovery") && ($properties & 0x10)} {

set cmds [ble userdata $handle]

lappend cmds [list ble enable $handle $suuid $sinstance $cuuid $cinstance]

ble userdata $handle $cmds

}

...
```

Most sensors need to be enabled explicitly by writing sensor dependent commands in a configuration characteristic.

```
connection {
   if {$state eq "connected"} {
                                                              :# enable all notifications
       set cmds [ble userdata $handle]
       if {$cmds ne {}} {
           set cmd [lindex $cmds 0] ; set cmds [lrange $cmds 1 end] ; {*}$cmd
           # Add commands to turn various sensors on. Barometer needs two configurations
           # to load its calibration. Gyroscope has a bitmask for various axes.
           set on1 [binary format H* "01"]
           set on2 [binary format H* "02"]
          set on7 [binary format H* "07"]
           foreach {suuid cuuid on} { AA00 AA02 on1 AA10 AA12 on1 AA20 AA22 on1
                        AA30 AA32 on1 AA40 AA42 on2 AA50 AA52 on7 AA40 AA42 on1 } {
               lappend cmds [list ble write $handle $suuid 0 $cuuid 0 [set $on]]
           }
           # Read barometer calibration.
           lappend cmds [list ble read $handle AA40 0 AA43 0]
           ble userdata $handle $cmds
       }
   }
    . . .
```

Process sensor value

Snippet shows how the magnetic field sensor value is converted.

```
switch -glob $cuuid {
  F000AA31-* {
    set x 0
    set y 0
    set z 0
    binary scan $value s1s1s1 x y z
    set ::sensortag(magnetic_x) \
        [format "%.5f" [expr {0-$x*2000.0/65536.0}]]
    set ::sensortag(magnetic_y) \
        [format "%.5f" [expr {0-$y*2000.0/65536.0}]]
    set ::sensortag(magnetic_z) \
        [format "%.5f" [expr {$z*2000.0/65536.0}]]
}
```


Full demo available in AndroWish's source tree as

.../assets/ble1.0/demos/tricorder.tcl

Thank you.

Questions?