
AndroWish

Executive Summary

Tcl (Tool Command Language) is a very powerful but easy to learn dynamic programming
language, suitable for a very wide range of uses, including web and desktop applications,
networking, administration, testing and many more. Open source and business-friendly, Tcl is
a mature yet evolving language that is truly cross platform, easily deployed and highly
extensible.

Tk is a graphical user interface toolkit that takes developing desktop applications to a higher
level than conventional approaches. Tk is the standard GUI not only for Tcl, but for many
other dynamic languages, and can produce rich, native applications that run unchanged across
Windows, Mac OS X, Linux and more.

AndroWish allows to run desktop Tcl and Tk programs almost unaltered on the Android
Platform while it opens the door to script a rich feature set of a mobile platform. Its sibling
undroidwish uses the same code base and offers a similar feature set on various desktop and
embedded platforms.

Quick Links

Documentation

Tcl/Tk 8.6 manual,
ble, borg, dmtx, modbus, muzic, rfcomm, sdltk, snap7, tclcan, topcua, usbserial, uvc, wmf, v4l2,
zbar, zipfs,
list of extensions, list of releases, environment, undroidwish, undroidwish command line switches

PDF booklet for eBook readers, excerpt of this wiki

Development AndroWish SDK, building#1, building#2, examples
Downloads AndroWish-debug.apk, AWSDK.zip

Features

Native Tcl/Tk 8.6 port for Android (version 2.3.3 or above) available for ARM and x86 processors.
Top goal: execute existing Tcl/Tk scripts on Android without modification.
Based on Tim Baker's earlier SDLTk project.
X11 emulation based on AGG (Anti-Grain-Geometry) and SDL 2.0.
Provides anti-aliased rendering of lines, circles, arcs.
Font rendering using freetype font engine. Starting with the "Back to the Future (2015-10-21)" release, Unicode
8.0 is fully supported and Emojis can be displayed (and input with the on-screen keyboard on newer Android
devices).
Includes the 3D canvas widget which uses an OpenGL to OpenGLES 1.1 emulation for drawing on the Android
platform.
Includes the tkpath widget, an enhanced canvas with SVG like capabilities, anti-aliased rendering, alpha channel,
and TrueType outline fonts.
Mounts its constituting APK (Android package) using a built-in ZIP virtual file system as a memory mapped file.
"Batteries Included" packaging like TclKits, i.e. many ready-to-use Tcl extensions are already bundled.
Some Android specific facilities are exposed through SDL and usable with the sdltk command.
Tcl commands are available to use even more Android specific facilities: borg command, ble command, rfcomm
command, usbserial command.
Some Android specific things are exposed through Environment Variables.
A MIDI sound package is built in and described in Muzic MIDI sound package.
An experimental rendering mode allows to use it with VR headsets like Google's cardboard.
Many example scripts are built into the AndroWish package.
Building AndroWish requires the Android SDK and Android NDK. A detailed description by Harald Oehlmann is
available in Build custom Androwish.
A new approach of bundling Tcl scripts with the AndroWish infrastructure is described in AndroWish SDK.
Testing and debugging Tcl scripts on an Android device can be carried out from a development system using
tkconclient. Files can be transferred using a SSH/SFTP connection as described in tkconclient. More tips can be
found in Test and debug strategies on AndroWish.
There are certain Limitations of AndroWish.
Support for generating bar codes using ZINT and decoding bar codes using the ZBar bar code reader, and data
matrix codes using the libdmtx library. See description of zbar command and dmtx command.
Beneath and Beyond AndroWish are components in the source tree which can be recompiled for other platforms
like the Raspberry Pi and even Windows.
Slides (PDF) from EuroTcl2014.
Slides (PDF) from Tcl2014.
Slides (PDF) from EuroTcl2015.
Slides (PDF) from EuroTcl2016.

http://www.tcl-lang.org/man/tcl8.6/
http://www.androwish.org/index.html/raw/b5b5405831cf2da6af010a9ef276074f2c2b801e
http://www.androwish.org/download/AndroWish-6e2085e6e4-debug.apk
http://www.androwish.org/download/AWSDK-6e2085e6e4.zip
http://www.tcl-lang.org
http://wiki.tcl-lang.org/4607
http://www.antigrain.com
http://libsdl.org
http://www.freetype.org
http://3dcanvas.tcl-lang.org
https://bitbucket.org/andrew_shadura/tkpath
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://zint.github.io
http://zbar.sourceforge.net
http://sourceforge.net/projects/libdmtx/
http://www.raspberrypi.org
http://www.androwish.org/index.html/raw/3de97eab9a70cc0cc00e4085c0e16f07379f72c1
http://www.androwish.org/index.html/raw/8999948f92969d6b3621412a8d617c5e47139ad4
http://www.androwish.org/index.html/raw/06a9a1dfcb301777098b1a27f4e2efaf61b974ff
http://www.androwish.org/index.html/raw/36f96ca4f031ca80e71930dd6b0634326f4515ba

Slides (PDF) from EuroTcl2018.

The current AndroWish-debug.apk can be downloaded here (about 34 MByte, requires "install from unknown sources"
in Android settings). Prehistoric versions are still available here.

http://www.androwish.org/index.html/raw/4dff70a48281544a297c07589c8e5bcb23e301ad
http://www.androwish.org/download/AndroWish-6e2085e6e4-debug.apk
http://www.ch-werner.de/sdltk/AndroWish

Android facilities

borg command

Name

borg - control and interact with the Android OS.

Synopsis

package require Borg
borg cmd ?arg ...?

Description

This command integrates the capabilities of Tcl/Tk with Android by way of several subcommands. These allow Tcl/Tk to
go where it has never gone before by querying and controlling Bluetooth functionality, OS notifications (including
device vibration and even speech), location information, etc.

Bluetooth-Related Commands

borg bluetooth devices

Returns a list suited for array set or dict create commands containing the Bluetooth address and
friendly name of all paired Bluetooth devices.

borg bluetooth state

Returns the current Bluetooth state: off, on, turning_off, or turning_on.

borg bluetooth scanmode

Returns the current Bluetooth scan mode: connectable, off, passive, or visible.

borg bluetooth myaddress

Returns the Bluetooth address of the local default Bluetooth adapter.

borg bluetooth remoteaddress address

Returns the friendly name for the given Bluetooth address.

borg bluetooth on

Quote from Android documentation: do not use without explicit user action to turn on Bluetooth. Tries to
turn the Bluetooth adapter on. Returns 1 if the adapter is already or going to be turned on, 0 otherwise.

borg bluetooth off

Quote from Android documentation: do not use without explicit user action to turn off Bluetooth. Tries to
turn the Bluetooth adapter off. Returns 1 if the adapter is already or going to be turned off, 0 otherwise.

For communication over Bluetooth see the description of the rfcomm command. For handling of Bluetooth Low Energy
(Bluetooth Smart) devices see the description of the ble command.

USB-Related Commands

borg usbdevices ?extended?

If extended is omitted or false, a list suitable for the array set or dict create commands containing the
USB device name and vendor/product identifier of all currently connected USB devices is returned.
Otherwise, i.e. extended is true, three elements per USB device are returned: USB device name,
product/vendor identifier, and USB interface information as in udev.

borg usbpermission devname ?ask?

Queries permission for the USB device devname and returns 1 if the device is usable, 0 if not, and a
negative number on error. If the optional boolean argument ask is specified as true, a system dialog is
shown allowing the user to grant or deny permission for the USB device.

For communication over USB serial converters see the description of the usbserial command.

Network-Related Commands

borg networkinfo

http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#enable()
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#disable()

Returns the current state of the network: none, wifi, mobile gsm, etc. An update of this information is
indicated by the <<NetworkInfo>> virtual event sent to all toplevel widgets.

borg tetherinfo

Returns the current state of tethering as a list suited for array set or dict create with zero or three
entries active, available, and error which usually contain interface names. An update of this information
is indicated by the <<TetherInfo>> virtual event sent to all toplevel widgets.

Desktop-Related Commands

borg shortcut add name-of-shortcut script-to-run ?png-icon-as-base-64-string?

Adds an icon to the desktop, with the label name-of-shortcut specified. The script, specified as script-to-
run must use an absolute path as a file:// URI and must be readable by the user id under which the
AndroWish package has been registered by the Android installer. The last (optional) parameter png-icon-
as-base-64-string allows the icon graphic to be specified. If not provided, a default AndroWish icon is
used. According to the guidelines on iconography icons should have an aspect ratio of 48 by 48 pixels (192
x 192 is recommended, at 4 times 48x48 pixels). Example (pseudo code):

 package require base64
 proc read_binary_file {name} { # whatever is needed to read bytes ... }
 set icondata [read_binary_file "/mnt/sdcard/appicon_48_48.png"]
 set iconbase64 [::base64::encode -maxlen 0 $icondata]
 borg shortcut add "My App" file://mnt/sdcard/speaktest.tcl $iconbase64

borg shortcut delete name-of-shortcut

Deletes an icon from desktop (depends on Android launcher support).

Notification-Related Commands

borg notification add id title ?text icon action uri type categories component arguments?

Adds a notification with title and text into the Android notification area. The integer id, specified by the
caller, is used to identify the notification for later modification or deletion. The optional parameters starting
from action form an activity (see borg activity ...) to be carried out when the user clicks on the
notification. See the description of borg alarm set below for special treatment of the component
parameter. The optional icon must be a PNG or JPG image encoded as base64 string. The size of the icon
should be 24 by 24 pixels.

borg notification delete ?id?

Deletes a notification identified that was created with the id specified. If no id is provided, all notifications
are deleted.

borg notification led id argb onms offms

Adds a notification controlling the device LED. The integer id, specified by the caller, is used to identify the
notification for later modification or deletion. The integer parameter argb is the LED color as combined RGB
value with alpha channel, onms and offms are integers, too, controlling the duty cycle of blinking.

borg vibrate ms

Turns the vibration motor on for integer ms milliseconds.

borg beep ?uri?

Plays a notification sound. If uri is specified and not an empty string, it is played as
notification/ringtone/alarm sound. If given as empty string, the current playback is stopped. If omitted or
unable to be resolved, the default notification sound is played. The URI typically has the pattern
content://media/{internal,external}/audio/media/<id>, where id is an integer number identifying a
sound file. The borg content command can be used to obtain information on notification sounds from
Android's media provider.

borg speak text ?lang pitch rate?

Gets the Android to read out the string text. Optional parameter lang is the language code for the spoken
language, e.g. en, en_US, de, es, etc. Optional parameters pitch and rate control the voice and speed as
float values. On success an integer number >= 1000 is returned which identifies the text to be spoken in
various virtual events. On error a negative number is returned. More information.

borg stopspeak

Stops speech output.

borg isspeaking

Returns a small integer indicating the state of speech output. Zero indicates initialization of speech output
has been performed but no speech output is currently active. One is returned when speech output is

http://developer.android.com/design/style/iconography.html
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html

active. A small negative number indicates an error, temporary or permanent unavailability of the text-to-
speech facility. In order to start up the text-to-speech facility this command can be used. The first call
usually returns -1 and calls some few hundred milliseconds later return zero, indicating availability of the
text-to-speech facility.

borg endspeak

Stops speech output and releases system resources.

borg toast text ?flag?

Displays a text notification text for a short period of time. The duration of that display is somewhat longer
when flag is specified as true.

borg spinner on|off

Displays or withdraws a spinner (rotating symbol indicating busy state) depending on argument.

Location-Related Commands

borg location start ?minrate-in-ms ?min-dist-in-m??

Begins acquiring location data via the Android OS (which may choose to use GPS, network info, etc.).

borg location stop

Ends location data acquisition.

borg location get

Returns the location data (as an array set or dict createform) where the key is the location source.
Location updates trigger a virtual event <<LocationUpdate>> that is sent to all toplevel widgets. These
toplevel event-handlers should, in turn, invoke borg location get to refresh their knowledge.

borg location gps

Returns GPS information in array set or dict create form with the keys state (on or off) and first_fix
(time in seconds until first fix expected). Updates in GPS information are indicated by the <<GPSUpdate>>
virtual event sent to all toplevel widgets.

borg location satellites

Returns GPS satellite information in array set or dict create form where the key is a numerical index and
the values are per satellite information in array set or dict create form containing the fields index,
azimuth, elevation, prn, snr, almanac, ephemeris, and infix. Updates in GPS information are indicated by
the <<GPSUpdate>> virtual event sent to all toplevel widgets.

borg location nmea

Returns a string made up of the NMEA sentences collected over the last second. Updates in this string are
indicated by the <<NMEAUpdate>> virtual event sent to all toplevel widgets.

System-Related Commands

borg displaymetrics

Returns information about the display in form suited for array set or dict create, e.g. display resolution,
pixel density. The entry rotation gives the current screen rotation in degrees. The 0 degree point varies
between devices, typical smart phones report 0 for portrait, tablets report 0 for landscape orientation.
More information.

borg osbuildinfo

Returns information about the operating system and device in form suited for array set or dict create,
e.g. Android API level, version, device name, manufacturer etc. More information.

borg queryfeatures

Returns information about features of the system (a lengthy list of strings) which is obtained from
getSystemAvailableFeatures.

borg queryconsts classname

Returns a dictionary of constants of the (loaded) Java class classname. The keys are the names of the
constants, the values their value. For example, the symbols of SYSTEM_UI_* flags are available when you
evaluate:

 borg queryconsts android.view.View

borg queryfields classname

http://developer.android.com/reference/android/util/DisplayMetrics.html
http://developer.android.com/reference/android/os/Build.html
http://developer.android.com/reference/android/content/pm/PackageManager.html#getSystemAvailableFeatures()

Returns a dictionary of constants and static fields of the (loaded) Java class classname. This is similar to
borg queryconsts but allows to retrieve no-constant strings, too. Most useful in combination with the
android.os.Environment class.

borg packageinfo ?name?

Returns information about installed packages or an individual package if its name is given. In the first case,
a list with package names is returned, in the latter case a list of key value pairs with package information
which can be used for array set or dict create.

borg providerinfo

Returns the authority names of all content providers known to the system as a list.

borg log prio tag message

Writes the message message to Android's system log with priority prio (one of verbose, debug, info, warn,
error, or fatal) and a user chosen prefix tag. These log messages can be displayed using adb logcat on
the development system.

borg trace message script

Evaluates script and adds message before and after that evaluation to Android's system trace buffer. This
is supported only on newer Android OS versions (4.3 and above) and further described in the
android.os.Trace class.

borg systemproperties ?name?

Returns a list of system properties (a lengthy list of key value pairs) or the value of a specific system
property if name is given.

borg checkpermission name

Returns true or false depending on manifest permission name. For a detailed list see the description of the
android.Manifest.permission class.

Sensor-Related Commands

borg sensor list

Returns a list of the available sensors of the device. Each item is suited for array set or dict create and
contains the fields index (integer index of the sensor, used to identify it), type (sensor type, one of
accelerometer, temperature, game_rotation_vector, geomagnetic_rotation_vector, gravity, gyroscope,
gyroscope_uncalibrated, light, linear_acceleration, magnetic_field, magnetic_field_uncalibrated,
orientation, pressure, proximity, relative_humidity, rotation_vector, step_counter, and
step_detector), mindelay (minimum update interval in milliseconds), maxrange (maximum range, floating
point), resolution (floating point), power (in mA, floating point), and name (name of the sensor). More
information.

borg sensor enable|disable|state index

Turns the sensor identified by index on or off, or returns its state (0=off, 1=on). An enabled sensor
generates <<SensorUpdate>> virtual events which are sent to toplevel windows. These events are either
periodic updates or change notifications depending on the kind of sensor and its refresh rate. If a sensor is
not read out using borg sensor get ... for a certain amount of time that sensor is automatically disabled
to conserve battery power. If the application enters background (see virtual event
<<WillEnterBackground>>) all enabled sensors are disabled and re-enabled again when the application
comes back to foreground (see virtual event <<WillEnterForeground>>).

borg sensor get index

Returns the last value acquired from the sensor identified by index as a list suited for array set or dict
create containing the fields index (integer), enabled (sensor state, 0 or 1), maxrange (see above),
resolution (see above), accuracy (the accuracy of this value), values (the sensor value, zero or more
floating point numbers). When both accelerometer and magnetic_field sensors are turned on, the
information for the magnetic_field sensor has two additional entries orientation (3 element list of
azimuth, pitch, roll) and inclination. The pressure sensor has an additional entry altitude (meters
above sea level). More information.

Android Content (shared databases)

borg content query uri ?columns ?where ?whereargs ?orderby????

Performs a query on an Android content provider given by uri and returns a cursor token (a Tcl command
which deals with that cursor). The optional columns are a comma separated list of database columns to
appear in the result set. The optional where and whereargs parameters form the SQL WHERE clause of the
query. Question mark parameter markers in where are positionally substituted by the information from the
whereargs list. The optional orderby is the SQL ORDERBY part of the query. Example:

http://developer.android.com/reference/android/os/Environment.html
http://developer.android.com/reference/android/os/Trace.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/hardware/Sensor.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

 set cursor [borg content query content://settings/system]
 # initially, cursor points before first row
 while {[$cursor move 1]} {
 puts [$cursor getrow]
 }

borg content delete uri selection ?value ...?

Deletes rows from an Android content provider given by uri and returns the number of deleted rows.
selection forms the SQL WHERE clause of the deletion where question mark parameter markers are
substituted by value. Example:

 borg content delete content://settings/system name=? my_item

borg content insert uri key value ...

Inserts a row into an Android content provider given by uri and returns another URI which identifies the
inserted row. key and value are pairs of column name and column value for the SQL INSERT operation.
Example:

 borg content insert content://settings/system name my_item value "Some value"
 -> content://settings/system/4711

borg content update uri values ?selection ?args??

Updates zero or more rows of an Android content provider given by uri and returns the number of
updated rows. values is a list made up of a sequence of column names and column values. selection is
the optional SQL WHERE clause with question mark parameter markers. The parameter markers are
substituted by the values from args. Example:

 # system settings wants the name in the URI
 borg content update content://settings/system/my_item {value {New Value}}

Cursors from Android Content queries

When a borg content query returned a cursor token, this token is a Tcl command to deal with the query's result set:

$cursor close

Finishes the query and deletes the Tcl command.

$cursor columnnames

Returns a list of column names of the result set.

$cursor count

Returns the number of rows of the result set.

$cursor getblob index

Returns the indexth column (zero-based) of the current row of the result set as a base64 encoded string.

$cursor getdouble index

Returns the indexth column (zero-based) of the current row of the result set as a floating point number.

$cursor getint index

Returns the indexth column (zero-based) of the current row of the result set as a integer number.

$cursor getpos

Returns the index of the current row (zero-based).

$cursor getrow

Returns the current row as a Tcl list made up of strings. Blobs from the result set are converted into
base64 encoded strings.

$cursor getstring index

Returns the indexth column (zero-based) of the current row of the result set as a string.

$cursor isnull index

Returns true when the indexth column (zero-based) of the current row of the result set is an SQL NULL
value.

$cursor move pos

Relative move of the current row index. Negative pos goes backward.

$cursor moveto pos

Absolute move of the current row index.

Speech Recognition

borg speechrecognition intent args cmd

Use the speech recognition service. args is a parameter list to control the speech recognition (more
information). cmd is invoked when the speech recognition is complete. That procedure receives the
parameters retcode and data as in the callback for borg activity. data is a list of key value pairs suited
for array set or dict create.

borg speechrecognition callback cmd

Establishes cmd as global callback procedure receiving speech recognition events as described by the
RecognitionListener interface (more information). That procedure receives the parameters retcode and
data as in the callback for borg activity. data is a list of key value pairs suited for array set or dict
create. There are up to two special keys present in data: type giving the event type (one of result,
partialresult, ready, event. rms, end, begin) and value giving numeric values for certain event types
(error code for error, audio level for rms).

borg speechrecognition start args

Starts the speech recognition. For args see the description in borg speechrecognition intent

borg speechrecognition cancel

Immediately cancels the speech recognition. No further events are reported through the global callback
procedure.

borg speechrecognition stop

Stops the speech recognition. Events can be still reported through the global callback procedure.

Telephone-Related Commands

borg phoneinfo

Returns information about the current state of the telephone as a list suited for array set or dict create.
This information is only available when the application manifest has the
android.permission.READ_PHONE_STATE permission (which is left out in current AndroWish releases). For
further information see the Android documentation on the classes TelephonyManager, PhoneStateListener,
and SignalStrength.

borg sendsms phonenumber msg ?action_send action_delivered smsc?

Sends an SMS text message msg to phonenumber. The optional arguments action_send and
action_delivered are the action names of broadcast intents which are generated on state changes
regarding the SMS message and can be captured by a broadcast listener callback (see borg broadcast
register et.al.). The optional argument smsc is the SMS message center. The command returns 1 on
successful start of the send operation, 0 otherwise. It is only available when the application manifest has
the android.permission.SEND_SMS permission (which is left out in current AndroWish releases). For further
information see the Android documentation on the class SmsManager.

Broadcast

borg broadcast list ?action?

Returns a list of all registered broadcast handlers in the interpreter when action is omitted. Otherwise it
returns the command to be invoked when the broadcast action is received.

borg broadcast register action cmd

Registers the command cmd to be invoked when the broadcast action is received.

borg broadcast unregister action

Unregisters the command bound to the reception of the broadcast action.

borg broadcast send action ?uri type categories arguments?

Sends the broadcast action with the optional properties/arguments uri, type, categories, and
arguments. For the optional items see the description in borg activity.

Locale

http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/reference/android/speech/RecognitionListener.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://developer.android.com/reference/android/telephony/PhoneStateListener.html
http://developer.android.com/reference/android/telephony/SignalStrength.html
http://www.androwish.org/index.html/wiki?name=AndroWish
http://developer.android.com/reference/android/telephony/SmsManager.html

borg locale ?default?

Returns information about the current default locale of the JVM. The result is in a form suitable for array
set or dict get and contains the fields country, display_country, display_language, display_name,
display_variant, iso3_country, iso3_language, language, and variant.

borg locale lang

Returns information about the locale identified by lang, which must be specified as a two letter code with
an optional variant and an optional encoding part, e.g. de, fr_BE, or en_GB.UTF-8.

borg locale tts

Returns information about the locale used for text-to-speech. If text-to-speech facilities weren't used
when the command is invoked, the returned information is identical with borg locale default.

borg locale set lang

Changes the current locale of the JVM to the language code lang. If the locale change succeeded, the
environment variable env(LANG) is changed accordingly.

Camera-Related Commands

Camera support is available on devices with Android 3.0 or newer.

borg camera close

Close the camera. Returns non-zero on success, zero otherwise, e.g. when the camera was already closed.

borg camera current

Returns the currently opened camera number or -1 when the camera is not opened. On many tablets
camera 0 is the back-facing camera, and camera 1 the front-facing one.

borg camera grayimage ?photo?
borg camera greyimage ?photo?

Copies the most recent camera preview as grey image into the photo image identified by photo. Returns
non-zero on success or zero if no data transfer has taken place. If photo is omitted, a four element list is
returned with the first element being the image width, the second the image height, the third the number
of bytes per pixel, and the last the image's grey values with 1 byte per pixel as a byte array. In this case
an error is indicated by throwing an exception. An experimental feature is direct rendering into a widget. In
this case the photo parameter must be the path name of a Tk window which should be a frame or toplevel
widget. When the camera is started the background color of the widget should be set to an empty string
so that no drawing calls from Tk are carried out. When the camera is stopped, it should be set to black.

borg camera image ?photo?

Copies the most recent camera preview as color image into the photo image identified by photo. Returns
non-zero on success or zero if no data transfer has taken place. If photo is omitted, a four element list is
returned with the first element being the image width, the second the image height, the third the number
of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red, green, blue order as a
byte array. In this case an error is indicated by throwing an exception. An experimental feature is direct
rendering into a widget. In this case the photo parameter must be the path name of a Tk window which
should be a frame or toplevel widget. When the camera is started the background color of the widget
should be set to an empty string so that no drawing calls from Tk are carried out. When the camera is
stopped, it should be set to black.

borg camera info

Returns information about the currently opened camera as a two element list made up of integer numbers.
The first is the rotation of the camera relative to the screen, the second an indication for front-facing (1) or
back-facing (0) view of the camera relative to the screen. If no camera is opened the result is an empty list.

borg camera jpeg

Returns a JPEG image of the camera as a byte array after preview has been started using borg camera
start and JPEG capture has been initiated with borg camera takejpeg. In contrast to borg camera image
... this command consumes the image. If no JPEG picture is available when the command is invoked, an
error is thrown.

borg camera mirror ?x y?

Controls mirroring of preview images which are mirrored along the X axis when x is one and along the Y
axis when y is one. borg camera mirror 0 1 is useful to mirror the preview image of a front-facing camera.

borg camera numcameras

Returns the number of available cameras.

borg camera open ?num?

Opens camera number num and returns non-zero on success. Only one camera can be opened at any one
time. On error or when a camera is already opened, zero is returned. When num is omitted the first camera
is opened (usually the back-facing if two cameras are available).

borg camera orientation ?degrees?

Returns the current orientation of the preview image relative to the screen or changes it to degrees.

borg camera parameters ?key value ...?

Returns or changes camera parameters given as key-value pairs, e.g. preview-size 320x240 will change
the size of preview images to width 320 and height 240. The command returns the current camera
parameters (after the potential change, when keys and values where given) as a key-value list which can be
processed with array set or dict get.

borg camera start

Starts the camera. Acquired preview images are reported by the virtual event <<ImageCapture>>. Returns
non-zero on success, zero when the camera is already started or an error has been detected. When the
acquisition of camera preview images is running borg camera image or borg camera greyimage must be
invoked within 5 seconds, otherwise image acquisition is automatically stopped and needs to be restarted
with another borg camera start command.

borg camera state

Returns the current camera state as string: unknown, closed, stopped, or capture.

borg camera stop

Stops the camera, i.e. no more images are acquired. Returns non-zero on success, zero when the camera
is already stopped or an error has been detected.

borg camera takejpeg

Requests the camera to take a JPEG image. It is required that the camera is capturing, i.e. borg camera
start has been called already. The point in time when acquisition of the JPEG image starts is indicated by
the virtual event <<Shutter>>. When the JPEG image is ready for processing the virtual event
<<PictureTaken>> is sent. The command returns a non-zero value when JPEG capture is in progress, zero
on error.

NFC Related

Many devices have hardware support for NFC (Near Field Communication) tags. In order to deal with such items, a
callback command for the broadcast tk.tcl.wish.nfc must be registered. The callback's arguments contain
information on the NFC tag in these keys:

android.nfc.extra.ID

The the base64 encoded ID of the tag.

android.nfc.extra.TAG

The underlying/supported technologies of the tag as a string. Currently only android.nfc.tech.Ndef and
android.nfc.tech.NdefFormatable are detected and handled.

android.nfc.extra.NDEF_MESSAGES

If present contains the NDEF formatted information contained in the tag encoded in base64.

The last read tag ID is remembered and can be dealt with using these borg subcommands:

borg ndefread tagid ?cached?

Returns the current or cached NDEF formatted information contained in the tag given tagid as base64
encoded string.

borg ndefwrite tagid ndefmsg

Writes the NDEF formatted information (one or more NDEF records) in ndefmsg which must be base64
encoded into the tag given tagid.

borg ndefformat tagid ndefmsg

Formats an empty tag and like borg ndefwrite writes NDEF formatted information into the tag. An
unformatted tag can be detected in the tk.tcl.wish.nfc callback procedure by inspecting the technology
information: The string android.nfc.tech.Ndef is absent but the string
android.nfc.tech.NdefFormatable is present.

OS Environment

Information provided by the android.os.Environment class.

borg osenvironment datadir

Return the user data directory (see getDataDirectory).

borg osenvironment downloadcachedir

Return the download/cache content directory (see getDownloadCacheDirectory).

borg osenvironment externalstoragedir

Return the primary shared/external storage directory (see getExternalStorageDirectory).

borg osenvironment externalstoragepublicdir ?type?

Get a top-level shared/external storage directory for placing files of a particular type (see
getExternalStoragePublicDirectory). The parameter type can be obtained by using information returned
from borg queryfields android.os.Environment.

borg osenvironment externalstoragestate

Returns the current state of the primary shared/external storage media (see getExternalStorageState).

borg osenvironment isexternalstorageemulated

Returns whether the primary shared/external storage media is emulated (see isExternalStorageEmulated).

borg osenvironment isexternalstorageremovable

Returns whether the primary shared/external storage media is physically removable (see
isExternalStorageRemovable).

borg osenvironment rootdir

Return root of the "system" partition holding the core Android OS (see getRootDirectory).

Shared Preferences

An interface to android.content.SharedPreferences is provided using the borg sharedpreferences subcommand. This
allows to load/store typed values of an application in a key-value store which does not require extra file permissions.

borg sharedpreferences file getboolean key default

Return a boolean value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file getfloat key default

Return a floating point value (using default if not present) from the shared preference file identified by
file stored under the name key.

borg sharedpreferences file getint key default

Return an integer value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file getlong key default

Return a 64 bit integer value (using default if not present) from the shared preference file identified by
file stored under the name key.

borg sharedpreferences file getstring key default

Return a string value (using default if not present) from the shared preference file identified by file
stored under the name key.

borg sharedpreferences file setboolean key value

Store the boolean value into the shared preference file identified by file under the name key.

borg sharedpreferences file setfloat key value

Store the floating point value into the shared preference file identified by file under the name key.

borg sharedpreferences file setint key value

Store the integer value into the shared preference file identified by file under the name key.

borg sharedpreferences file setlong key value

Store the 64 bit integer value into the shared preference file identified by file under the name key.

http://developer.android.com/reference/android/os/Environment.html
http://developer.android.com/reference/android/os/Environment.html#getDataDirectory()
http://developer.android.com/reference/android/os/Environment.html#getDownloadCacheDirectory()
http://developer.android.com/reference/android/os/Environment.html#getExternalStorageDirectory()
http://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)
http://developer.android.com/reference/android/os/Environment.html#getExternalStorageState()
http://developer.android.com/reference/android/os/Environment.html#isExternalStorageEmulated()
http://developer.android.com/reference/android/os/Environment.html#isExternalStorageRemovable()
http://developer.android.com/reference/android/os/Environment.html#getRootDirectory()
https://developer.android.com/reference/android/content/SharedPreferences.html

borg sharedpreferences file setstring key value

Store the string value into the shared preference file identified by file under the name key. borg
sharedpreferences file setstring key value

borg sharedpreferences file remove key

Remove the value stored under the name key from the shared preference file identified by file.

borg sharedpreferences file clear

Remove all key-value pairs stored in the shared preference file identified by file.

borg sharedpreferences file all

Return a Tcl list suitable for array set of all key-value pairs from the shared preference file identified by
file.

borg sharedpreferences file alltypes

Return a Tcl list suitable for array set of all keys and their respective value types from the shared
preference file identified by file.

borg sharedpreferences file keys

Return a Tcl list of all keys from the shared preference file identified by file.

General

borg withdraw

Hides the application window by putting it to the end of Android's activity stack. Can be useful when bound
to the Back key (<Key-Break> in AndroWish). There's no opposite command, i.e. the application can be
brought to front again only by user interaction.

borg brightness ?percent?

Sets or gets the screen brightness. If the percentage is negative, the default value is restored.

borg onintent ?command?

Sets or gets the callback command which is evaluated when the application received an Android intent. When
evaluating that command, the parameters action name, URI, MIME type, categories, arguments from the
intent are appended. When the callback is set for the first time, it gets immediately evaluated with the
parameters of the current (startup) intent.

borg queryactivites action ?uri type categories component?

Queries Android's activity manager for activities on the given intent parameters. categories and component
are optional lists. The latter when non-empty must contain the two elements package name and class
name.

borg queryservices action ?uri type categories component?

Queries Android's activity manager for services on the given intent parameters, similar to borg
queryactivities.

borg querybroadcastreceivers action ?uri type categories component?

Queries Android's activity manager for broadcast receivers on the given intent parameters, similar to borg
queryactivities.

borg screenorientation ?orient?

Queries or switches the screen orientation, orient can be one of unspecified, landscape, portrait, user,
behind, sensor, nosensor, sensorlandscape, sensorportrait, reverselandscape, reverseportrait,
fullsensor, userlandscape, userportrait, fulluser, or locked.

borg keyboardinfo

Returns information about the current keyboard configuration as a list suited for array set or dict create
with these fields: keyboard with possible values none, 12key, and qwerty, hidden and hard_hidden with
values 0 (not hidden), 1, (hidden), and -1 (unknown). This can be read out any time. An update in
keyboard configuration state is indicated by the virtual event <<KeyboardInfo>>.

borg alarm clear action ?uri type categories component?

Clears an alarm whose pattern matches the given intent parameters.

borg alarm set when repeat action ?uri type categories component arg ...?

Sets an alarm to fire at when (UN*X epoch, seconds) with repetition each repeat seconds, when repeat is

greater than 0. The alarm sends an intent made up of the given intent parameters (action etc.). The
component parameter is interpreted specially: when empty no component is set on the intent, when given
as self the calling package/class is set as component for the intent (sending the intent to itself, i.e. the
callback of borg onintent will receive it). In all other cases component must be a list with the two elements
package name and class name. arg and following parameters are added to the intent as key value pairs of
extra data.

borg alarm wakeup when repeat action ?uri type categories component arg ...?

Like borg alarm set but this type of alarm is able to wake up the device when suspended (device behavior
depends on lock screen settings).

borg activity action uri type ?categories ?component ?arguments ?callback????

This a very flexible command that allows extensive access to the Android OS and other applications.
categories, component, and arguments are optional lists. callback is the name of the procedure that is
evaluated when the activity action is complete. arguments are key-value pairs where the values are mapped
to Java strings by default. If the key is a 2-element list made up of a data type indicator (int, byte, short,
char, long, float, double, Uri) followed by the key, the value is converted to that data type. See below for
some examples of this command.

borg systemui ?flags?

Returns or sets various flags to control certain aspects of system UI elements displayed on the device's
screen. This is currently supported only on Android 4.4 and newer versions. See the documentation on
android.view.View for a description of the SYSTEM_UI_* flags.

Events

These events are generated for/by certain borg related commands. They are reported to toplevel widgets only.

<<LocationUpdate>>

Location information has been updated and can be read out using borg location get.

<<GPSUpdate>>

GPS related information has been updated and can be read out using borg location gps and borg
location satellites.

<<NMEAUpdate>>

NMEA data has been updated and can be read out using borg location nmea.

<<NetworkInfo>>

Network state has changed and can be read out using borg networkinfo.

<<TetherInfo>>

Tethering state has changed and can be read out using borg tetherinfo.

<<Bluetooth>>

A change in Bluetooth state and/or scan mode has occured and can be read out using borg bluetooth
state and/or borg bluetooth scanmode.

<<SensorUpdate>>

A sensor can be read using borg sensor get The field %x identifies the sensor.

<<KeyboardInfo>>

The keyboard configuration did change and can be obtained by borg keyboardinfo.

<<PhoneCallState>>

The call state of the telephone has changed and can be obtained by borg phoneinfo.

<<PhoneDataActivity>>

The state of the telephone's data state has changed and can be obtained by borg phoneinfo.

<<PhoneConnectionState>>

The state of the telephone's connectivity has changed and can be obtained by borg phoneinfo.

<<PhoneServiceState>>

The service state of the telephone has changed and can be obtained by borg phoneinfo.

<<PhoneSignalStrength>>

http://developer.android.com/reference/android/view/View.html

The signal quality of the telephone has changed and can be obtained by borg phoneinfo.

<<ImageCapture>>

A preview camera image is ready and can be obtained by borg camera image photo or borg camera
greyimage photo. The field %x represents the camera capture state (true when preview images are
captured, false when capture will be stopped).

<<Shutter>>

The camera is about to take a JPEG image.

<<PictureTaken>>

The camera has taken a JPEG picture which can be obtained and consumed by borg camera jpeg. When
the event is reported, image capture of preview images is automatically stopped.

<<USBAttached>>

A USB device was attached. To find out information about the device, use the borg usbdevices command.
This event is generated on Android 4.4 and newer.

<<USBDetached>>

An USB device was detached (opposite of <<USBAttached>>).

<<TTSInit>>

The text-to-speech facility has been started up or shut down. The %x substitution gives an indication for
startup (=0), error (=-1), and unavailability (<-1). Supported in Android 4.1 and higher.

<<TTSStart>>

Speech output of a string has started. The %x substitution is equal to the integer returned by the
corresponding borg speak command. Supported in Android 4.1 and higher.

<<TTSError>>

Error indication for a string to be spoken by borg speak. The %x substitution is equal to the integer
returned by the corresponding borg speak command as for the <<TTSStart>> event. Supported in Android
4.1 and higher.

<<TTSDone>>

End of speech indication for a string to be spoken. The %x substitution is equal to the integer returned by
the corresponding borg speak command as for the <<TTSStart>> event. Supported in Android 4.1 and
higher.

borg activity Examples

Sample code to open a browser on the Tcl'ers wiki:

 borg activity android.intent.action.VIEW http://wiki.tcl.tk text/html

Sample code to launch the "wifi settings" page:

borg activity android.settings.WIFI_SETTINGS {} {} {} {} {}

Sample code to capture an image (only makes thumbnails):

 proc callback {retcode action uri mimetype categories data} {
 if {$retcode == -1} {
 # SUCCESS
 array set result $data
 if {[info exists result(data)]} {
 myphoto configure -data $result(data)
 }
 }
 }
 package require Img
 image create photo myphoto
 borg activity android.media.action.IMAGE_CAPTURE {} {} {} {} {} callback

Sample code to capture an image, which makes full size images but requires a file on external storage:

 proc callback {filename retcode action uri mimetype categories data} {
 if {$retcode == -1} {
 # SUCCESS
 myphoto configure -file $filename
 catch {file delete -force $filename}
 }

 }
 package require Img
 image create photo myphoto
 set filename [file join $env(EXTERNAL_FILES) myphoto.jpeg]
 borg activity android.media.action.IMAGE_CAPTURE {} {} {} {} \
 [list {Uri output} file://$filename] [list callback $filename]

Reading barcodes using the ZXing barcode scanner (which needs to be be installed on your device):

 proc barcode_read {code action uri type cat data} {
 array set result $data
 if {[info exists result(SCAN_RESULT)]} {
 # that is the barcode
 # result(SCAN_RESULT_FORMAT) is the barcode format
 }
 }

 borg activity com.google.zxing.client.android.SCAN {} {} {} {} {} barcode_read

http://code.google.com/p/zxing

AndroWish SDK

The AndroWish Software Development Kit

This is a preliminary description of the AndroWish SDK. It consists of a large ZIP file made up of prebuilt components
(Java classes, shared libraries, Tcl library files, and other resource and property files) and a small graphical tool called
bones to customize these components and to finally create an installable Android package (an APK file).

Thus, in theory it is not necessary anymore to mess with the many pieces of source code which make up AndroWish
but to boldly click with the mouse some ten times to get a Tcl based Android App.

Prerequisites

A recent Java Development Kit, version 1.6 or 1.7
Android Standalone SDK tools.
Optionally Apache ant, often available as an optional installable package of a Linux distribution
Tcl/Tk wish version 8.5 or 8.6 (preferred) e.g. from ActiveState's ActiveTcl, but like ant, often available as an
optional installable package of a Linux distribution

AndroWish SDK Setup

The current AndroWish SDK has been tested on some Linux distributions (CentOS 6, Linux Mint 17.1) and on
Windows 7 (32 bit). It is reported to be usable on MacOSX, too.

Download the current AWSDK.zip and unpack it. Ensure, that you've set up your environment and/or path so that
the Android SDK tools can be found by the build tools (gradle or ant). Ensure, that you can run Tcl programs using
wish.

Experimental! For the adventurous there's a single file Win32 (32 bit) binary in bones.exe which contains both a
current wish and AWSDK.zip. It should be copied to a directory of its own where it unpacks the built-in AWSDK.zip
when executed for the first time.

Directory Structure of the SDK

After the AWZIP.zip has been unpacked, the resulting AWSDK directory contains these files and directories (only the
most important ones shown):

File/Directory Remarks

AndroidManifest.xml App descriptor, read/written by the bones tool. Contains App's entry point and
permissions.

ant.properties Build information for gradle or ant. Read/written by the bones tool for
keystore information (code signing).

assets/* Tcl/Tk libraries and additional support files (e.g. version information and package
inventory). Content controlled by the bones tool.

assets/app/* User code. The file main.tcl is automatically run by the App. Other user/App
specific files should go here, too.

build.gradle Control file for gradle (like Makefile for make).
build.xml Control file for ant (like Makefile for make).

_casket/* Directory where the bones tool moves and keeps track of unselected optional
components (Tcl/Tk and native shared libraries).

gradle/* Wrapper/support files for gradle.
gradlew Shell script to run gradle on UN*X platforms.
gradlew.bat Batch file to run gradle on Windows platforms.
libs/*.jar Precompiled Java libraries built into the App.

libs/armeabi/*.so Precompiled native shared libraries for ARM processors. Content controlled by
the bones tool.

libs/x86/*.so Precompiled native shared libraries for x86 processors. Content controlled by
the bones tool.

local.properties Information for ant to locate the Android SDK. Updated once on first run of the
bones tool.

res/* App resources, e.g. PNG icon files in various resolutions. Modified by the bones
tool for App icons.

settings.gradle Project settings for gradle.

http://www.androwish.org/index.html/wiki?name=AndroWish
https://developer.android.com/sdk/index.html
http://ant.apache.org
http://www.activestate.com/activetcl
http://www.androwish.org/download/AWSDK-f7afb8246e.zip
http://www.ch-werner.de/AndroWish/bones-f7afb8246e.exe

src/*
Java sources, App entry point (an empty Java class deriving from the AndroWish
activity super class). Modified by the bones tool according to the user chosen
package/class names.

tools/bones Tcl source of the bones tool

Except for the "assets/app" directory the layout and content of the AndroWish SDK directory tree should not be
altered manually in order to not confuse the bones tool.

External Tools

The following table lists the external programs which are used throughout operation of the bones tool.

Program Location Remarks

adb

$ANDROID_HOME/platform-tools/adb
(Unix)
%ANDROID_HOME%/platform-tools/adb
(Win32)
adb (fallback, all)

Android Debug Bridge used to optionally install
final package and to start it on device or
emulator.

android

$ANDROID_HOME/tools/android (Unix)
%ANDROID_HOME%/tools/android
(Win32)
android (fallback, all)

Android SDK Platform Manager used to setup
project initially. Required.

ant
$ANT_HOME/bin/ant (Unix)
%ANT_HOME%/bin/ant (Win32)
ant (fallback, all)

Apache ant used to control the APK build
process. Optional, deprecated.

fossil fossil Fossil repository program, optionally used on
startup to verify state of source tree.

keytool keytool
Key tool from the Java Development Kit. Only
used when an new keystore for code signing is to
be generated.

So the bones tool prefers to find the essential external programs using the two environment variables
ANDROID_HOME and ANT_HOME, and the common fallback strategy is to search for the external programs using
the normal search path for executable programs.

Since AndroWish version "Asteroid Day (2018-06-30)" ant is deprecated and gradle is used instead. To switch back
to using ant the two files gradlew and gradlew.bat can be renamed in order to force the bones tool to fall back to
ant.

Start the bones Tool

$ wish <path-where-AWSDK.zip-has-been-unpacked-to>/tools/bones

Fraction 1: Package Selection

The first page of bones allows to remove optional pieces of AndroWish. An overview of included components gives
Batteries Included. Uncheck unneeded packages in the list and remove them by pressing the Remove packages
button. This moves the selected packages out of the staging area that they will not be added later to the APK. The
Revert button moves all removed packages back to the staging area. When satisfied with your choice press the Next
button for the next page.

http://www.androwish.org/index.html/wiki?name=AndroWish

When all optional components are omitted and CPU support is limited to ARM only (described below), the size of the
resulting APK can be shrinked down to about 4 MByte instead of nearly 30 MByte with everything included.

Fraction 2: Add App Specific Files

This page allows to add files to the folder assets/app within the staging area. The most important script is main.tcl
which when found gets sourced on start up of AndroWish and thus allows to make your own App. Use the right
mouse button to paste or deleted files and directories into the assets/app folder. This works from file managers
which place their selected files into the clipboard. Otherwise use the Browse files ... button to open a simple file
browser. When finished with this step press the Next button to continue.

Fraction 3: The App Manifest

The manifest file (AndroidManifest.xml) is the application descriptor of the APK. It describes the App's unique name
(the combination of Package name and Class name) and its label on the home screen (the App name). A good
choice is a reversed domain name plus an optional package name component plus the final class name (example: the
XZing barcode scanner is com.google.zxing.BarcodeScanner, i.e. com.google.zxing is the package, and
BarcodeScanner the class name). The list box with App permissions allows to grant or revoke specific access
permissions on device components. When you're satisfied with your selection press Make manifest to write your
settings into the AndroidManifest.xml. After the new manifest settings have been written the Next button becomes
sensitive to switch to the next page.

http://www.androwish.org/index.html/wiki?name=AndroWish

NB: Under the hood when writing the AndroidManifest.xml an additional directory tree with a Java file based on the
package/class name fields is written, too, which contains an empty class definition deriving from
tk.tcl.wish.AndroWish. This is the App's worm hole from the Java universe into our little Tcl/Tk galaxy. Its singular
purpose is to satisfy the App naming requirement imposed by the Android empire.

Fraction 3a: Set App Icons

The icon(s) of the App shown in the home screen or in the notification area can be changed by pasting PNG files into
the image labels. New icons should be provided in the four sizes 144x144 (XXHDPI), 96x96 (XHDPI), 72x72 (HDPI),
and 48x48 (MDPI). When finished with the icons press the Next button to switch to the next page.

Fraction 4: Build Options, Code Signing

The CPU support selects which shared libraries are packaged into the APK. Currently, prebuilt support for ARM and
x86 exists. However, latest experiments with various x86 devices (Intel Atom) showed, that usually ARM CPU support
is sufficient since the x86 devices have an ARM emulation built in. Omitting x86 support squeezes about 7 MByte out
of the APK when all possible packages have been selected.

The Build mode and various key store related fields control if a debug APK shall be built (which is signed with a special
debug key). Alternatively, your own key shall be used to sign the APK. To create a key store from scratch enter the
values as shown in the image and press the Make keystore button. Otherwise use an already existing keystore (e.g.
~/.keystore , the default of Java's keytool) with approriate values for the key alias and passwords.

When ready for the final APK build step, press the Next button.

Fraction 5: APK Building

Building the APK (the Cleanup & build button) is equivalent to invoking

$ gradlew clean assembleDebug|assembleRelease

or

$ ant clean debug|release

on the command line within the install directory of the AndroWish SDK. If everything went well, one of the last lines of
output should read BUILD SUCCESSFUL. In this case the APK file can be found in
.../build/outputs/apk/AndroWishApp-debug.apk for a gradle debug build, .../bin/AndroWishApp-
debug.apk for an ant debug build, .../build/outputs/apk/AndroWishApp-release.apk for a gradle release build,
or .../bin/AndroWishApp-release.apk for an ant release build, and be transferred to a device or emulator. If an
Android device is connected to your development system the middle button changes to Install & run and allows to
install and start the new APK when clicked.

Fraction 5a: Installing/Running the APK

The Install & run button opens a log window which displays the output of adb logcat (the log facility of the Android

Debug Bridge). An example is shown below which displays an error message originating from the App (the lines with
"libtk" showing a Tcl error message). The check buttons with the single capital letters can be used to filter the log
output according to its log level, e.g. "V" for verbose, "D" for debug, "E" for error. The Lock/Scroll button disables
scrolling of the output window, the Clear button clears the output window, and the Run button allows to restart the
App on the device or emulator.

Happy Tcl'ing

🙋

Batteries Included

Batteries Included

Following table lists the extensions built into AndroWish and/or undroidwish including pointers to project pages
and/or documentation. Most extension names in the left most column can be used as package name in package
require. The extension name is linked to the respective folder in the source tree. Column A shows availability in
AndroWish, columns W/O/L in undroidwish (Windows, MacOSX, and/or Linux). A minus sign indicates an extension
which can't be provided for the respective platform for technical reasons.

Many extensions also run on POT (plain old Tk, i.e. X11 based on POSIX, Win32 based on Windows, Cocoa based on
MacOSX). However, there are some exceptions: BLT and Tkzinc are not ready for MacOSX. tcluvc is currently POSIX
only and depends on an USB stack providing isochronous transfers. v4l2 requires a Video 4 Linux 2 infrastructure,
which is available only for Linux and *BSDs.

Extension
Name

Version A W O L Remarks, URL, etc.

ble 1.0 ✔ - - - Bluetooth Low Energy support, part of AndroWish, see ble command

BLT 2.4z ✔ ✔ ✔ ✔ 2D graph, bargraph, stripchart widgets, i.e. a subset of full BLT,
http://sourceforge.net/projects/blt

borg 1.0 ✔ - - - Android integration, part of AndroWish, see Android facilities
BWidget 1.9.13 ✔ ✔ ✔ ✔ Mega widget package, http://core.tcl-lang.org/bwidget
can2svg 0.3 ✔ ✔ ✔ ✔ Tk canvas to SVG conversion from https://thecoccinella.org
Canvas3d 1.2.4 ✔ ✔ ✔ ✔ High-level OpenGL widget, http://3dcanvas.tcl-lang.org

csp 0.1.0 ✔ ✔ ✔ ✔ Golang inspired concurrency library for Tcl,
https://github.com/securitykiss-com/csp

dbif 2.0 - - ✔ ✔ DBus introspection interface, http://dbus-tcl.sourceforge.net
dbus 3.0 - - ✔ ✔ DBus bindings for Tcl, http://dbus-tcl.sourceforge.net
dde 1.4 - ✔ - - Win32 Dynamic Data Exchange, part of the Tcl core
DiffUtil 0.4.1 ✔ ✔ ✔ Peter Spjuth's DiffUtilTcl package, https://github.com/pspjuth/DiffUtilTcl

dmtx 0.7.5 ✔ ✔ ✔ ✔ Data matrix decoder, http://sourceforge.net/projects/libdmtx, see dmtx
command

Expect 5.45.4 ✔ - Automation for interactive programs, http://expect.sourceforge.net

Ffidl 0.7 ✔ ✔ ✔ ✔ Foreign function interface with dynamic loading using libffi,
https://github.com/prs-de/ffidl

fsdialog 1.15 ✔ ✔ ✔ ✔ Schelte Bron's ttk file selection dialog,
http://chiselapp.com/user/schelte/repository/fsdialog

fswatch 2.0 ✔ - - ✔ File system watcher based on inotify,
http://chiselapp.com/user/schelte/repository/fswatch

fuse 1.1 - ✔ Tcl interface to the linux kernel's FUSE subsystem,
https://sourceforge.net/projects/tcl-fuse

gridplus 2.11 ✔ ✔ ✔ ✔ Grid based layout system, http://www.satisoft.com/tcltk/gridplus2

helpviewer 3.0.2 ✔ ✔ ✔ ✔ Johann Oberdorfer's helpviewer using TkHTML3, http://www.johann-
oberdorfer.eu/blog/2017/04/10/17-10-04_helpviewer

icons 2.0 ✔ ✔ ✔ ✔ Icon sets, http://www.satisoft.com/tcltk/icons
Img 1.4.9 ✔ ✔ ✔ ✔ Support for many image formats, http://sourceforge.net/projects/tkimg
itcl 4.1.2 ✔ ✔ ✔ ✔ Tcl object system, http://core.tcl-lang.org/itcl
itk 4.1.0 ✔ ✔ ✔ ✔ Framework for mega widgets based on itcl, http://core.tcl-lang.org/itk

iwidgets 4.1 ✔ ✔ ✔ ✔ Object oriented mega widgets based on itk, http://core.tcl-
lang.org/iwidgets

materialicons 0.1 ✔ ✔ ✔ ✔ Package wrapping the Material Design Icons, part of AndroWish
Memchan 2.3 ✔ ✔ ✔ ✔ Memory channels, http://memchan.sourceforge.net
modbus 0.1 ✔ ✔ Tcl modbus interface (see http://libmodbus.org) using Ffidl and TclOO.
Mpexpr 1.2 ✔ ✔ ✔ ✔ Multi precision math package, https://core.tcl-lang.org/mpexpr

mqtt 2.0 ✔ ✔ ✔ ✔ MQTT library including simple broker by Schelte Bron,
https://chiselapp.com/user/schelte/repository/mqtt

muzic 1.0 ✔ - - - MIDI sound package, part of AndroWish, see Muzic MIDI sound package
notebook 2.2.0 ✔ ✔ ✔ ✔ Will Duquette's notebook app, https://github.com/wduquette/notebook
nsf 2.3.0 ✔ ✔ ✔ ✔ New Scripting Framework, http://next-scripting.org

parse_args 0.3.1 ✔ ✔ ✔ ✔ A fast argument parser based on the patterns established by core Tcl
commands, https://github.com/RubyLane/parse_args

parser 1.8 ✔ ✔ ✔ ✔ Tcl parser component,
https://chiselapp.com/user/aspect/repository/tclparser

pdf4tcl 0.9.1 ✔ ✔ ✔ ✔ PDF document generation, http://sourceforge.net/projects/pdf4tcl

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=jni/blt
http://sourceforge.net/projects/blt
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=assets/bwidget1.9.13
http://core.tcl-lang.org/bwidget
http://www.androwish.org/index.html/dir?name=assets/can2svg0.3
https://thecoccinella.org/
http://www.androwish.org/index.html/dir?name=jni/3dcanvas
http://3dcanvas.tcl-lang.org
http://www.androwish.org/index.html/dir?name=assets/csp0.1.0
https://github.com/securitykiss-com/csp
http://www.androwish.org/index.html/dir?name=undroid/dbus/dbus-intf
http://dbus-tcl.sourceforge.net
http://www.androwish.org/index.html/dir?name=undroid/dbus/dbus-tcl
http://dbus-tcl.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.androwish.org/index.html/dir?name=undroid/DiffUtilTcl
https://github.com/pspjuth/DiffUtilTcl
http://www.androwish.org/index.html/dir?name=jni/libdmtx
http://sourceforge.net/projects/libdmtx/
http://www.androwish.org/index.html/dir?name=jni/expect
http://expect.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/ffidl
https://github.com/prs-de/ffidl
http://www.androwish.org/index.html/dir?name=assets/fsdialog1.15
http://chiselapp.com/user/schelte/repository/fsdialog
http://www.androwish.org/index.html/dir?name=jni/fswatch
http://chiselapp.com/user/schelte/repository/fswatch
http://www.androwish.org/index.html/dir?name=undroid/tcl-fuse
https://sourceforge.net/projects/tcl-fuse/
http://www.androwish.org/index.html/dir?name=assets/gridplus2.11
http://www.satisoft.com/tcltk/gridplus2
http://www.androwish.org/index.html/dir?name=assets/helpviewer3.0.2
http://www.johann-oberdorfer.eu/blog/2017/04/10/17-10-04_helpviewer
http://www.androwish.org/index.html/dir?name=assets/icons2
http://www.satisoft.com/tcltk/icons
http://www.androwish.org/index.html/dir?name=jni/tkimg
http://sourceforge.net/projects/tkimg
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/itcl4.1.2
http://core.tcl-lang.org/itcl
http://www.androwish.org/index.html/dir?name=jni/itk
http://core.tcl-lang.org/itk
http://www.androwish.org/index.html/dir?name=assets/iwidgets4.1
http://core.tcl-lang.org/iwidgets
http://www.androwish.org/index.html/dir?name=assets/materialicons0.1
https://material.io/tools/icons
http://www.androwish.org/index.html/dir?name=jni/Memchan
http://memchan.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/modbus0.1
http://libmodbus.org
http://www.androwish.org/index.html/dir?name=jni/mpexpr
https://core.tcl-lang.org/mpexpr
http://www.androwish.org/index.html/dir?name=assets/mqtt2.0
https://chiselapp.com/user/schelte/repository/mqtt
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=assets/notebook2.2
https://github.com/wduquette/notebook
http://www.androwish.org/index.html/dir?name=jni/nsf
http://next-scripting.org
http://www.androwish.org/index.html/dir?name=jni/parse_args
https://github.com/RubyLane/parse_args
http://www.androwish.org/index.html/dir?name=jni/tclparser
https://chiselapp.com/user/aspect/repository/tclparser
http://www.androwish.org/index.html/dir?name=assets/pdf4tcl09
http://sourceforge.net/projects/pdf4tcl

pdf4tcl_graph 1.0 ✔ ✔ ✔ ✔ BLT/RBC commands for the pdf4tcl library, http://sesam-
gmbh.org/images/Downloads/Public/pdf4tcl_graph.zip

piio 1.1 - - - ✔ Schelte Bron's RaspberryPi GPIO/TWI/SPI library,
http://chiselapp.com/user/schelte/repository/piio

promise 1.1.0 ✔ ✔ ✔ ✔ Promise abstraction for asynchronous programming, http://tcl-
promise.magicsplat.com

ral 0.12.2 ✔ ✔ ✔ ✔ Relational algebra, http://chiselapp.com/user/mangoa01/repository/tclral
ralutil 0.12.2 ✔ ✔ ✔ ✔ Relational algebra, http://chiselapp.com/user/mangoa01/repository/tclral
reg 1.3 - ✔ - - Win32 Registry, part of the Tcl core

rfcomm 1.0 ✔ - - Support for Bluetooth serial port profile, part of AndroWish, see rfcomm
command

rl_json 0.9.12 ✔ ✔ ✔ ✔ JSON value type extension, https://github.com/RubyLane/rl_json
rmq 1.4.1 ✔ ✔ ✔ ✔ Pure Tcl Library for RabbitMQ, https://github.com/flightaware/tclrmq
snap7 0.1 ✔ ✔ Tcl interface to snap7, see http://snap7.sourceforge.net/

snack 2.2.10 ✔ ✔ ✔ ✔ Sound toolkit (MP3 and OGG support not provided),
http://www.speech.kth.se/snack

SOAP 1.6.8 ✔ ✔ ✔ ✔ Tcl SOAP interface, http://sourceforge.net/projects/tclsoap
sqlite3 3.28.0 ✔ ✔ ✔ ✔ Embedded SQL database, http://www.sqlite.org

starDOM 0.42 ✔ ✔ ✔ ✔ Small XML browser/editor based on tdom and BWidget, http://wiki.tcl-
lang.org/3895

tbcload 1.7 ✔ ✔ ✔ ✔ Byte-code loader, http://wiki.tcl-lang.org/2624
tcl 8.6.9 ✔ ✔ ✔ ✔ Tcl core, http://www.tcl-lang.org
tcl-augeas 0.4.0 - - ✔ ✔ Tcl binding to augeas, https://github.com/dbohdan/tcl-augeas

tclcan 0.1 - - ✔ Tcl interface to Linux SocketCAN raw AF_CAN sockets, part of
undroidwish, see tclcan

tclcsv 2.3 ✔ ✔ ✔ ✔ The tclcsv extension by Ashok P. Nadkarni, http://tclcsv.magicsplat.com/
TclCurl 7.22.0 ✔ ✔ ✔ ✔ Tcl interface to curl library, https://github.com/flightaware/tclcurl-fa

tclepeg 0.4 ✔ ✔ ✔ ✔ Tcl extension to the epeg thumbnailing library,
https://github.com/dzach/tclepeg

tclJBlend 2.0.0 ✔ ✔ ✔ ✔ Tcl extension using JNI to communicate with a Java VM,
https://sourceforge.net/projects/irrational-numbers/files

tcllib 1.19 ✔ ✔ ✔ ✔ Tcl standard library, http://core.tcl-lang.org/tcllib

tcl-lmdb 0.4.0 ✔ ✔ ✔ ✔ Tcl interface to the Lightning Memory-Mapped Database,
https://sites.google.com/site/ray2501/tcl-lmdb

TclMixer 1.2.3 ✔ Tcl interface to SDL2_mixer (music and sound playback),
http://sqlitestudio.pl/tclmixer

tcluvc 0.1 ✔ - ✔ ✔ Tcl interface to UVC type cameras based on libuvc and libusb

tclwmf 0.1 - ✔ - - Tcl interface to cameras using Windows Media Foundation, see wmf
command

Tclx 8.6 ✔ ✔ ✔ ✔ Extended Tcl, https://github.com/flightaware/tclx

tdbc 1.1.0 ✔ ✔ ✔ ✔ Tcl database connectivity, http://core.tcl-lang.org/tdbc
tdbc::jdbc 0.1.1 ✔ ✔ ✔ ✔ TDBC-JDBC bridge, https://github.com/ray2501/TDBCJDBC
tdbc::mysql 1.1.0 ✔ ✔ ✔ TDBC driver for MySQL, http://core.tcl-lang.org/tdbcmysql
tdbc::odbc 1.1.0 ✔ ✔ ✔ TDBC driver for ODBC, http://core.tcl-lang.org/tdbcodbc
tdbc::postgres 1.1.0 ✔ ✔ ✔ TDBC driver for PostgreSQL, http://core.tcl-lang.org/tdbcpostgres
tdbc::sqlite3 1.1.0 ✔ ✔ ✔ ✔ TDBC driver for sqlite3, http://core.tcl-lang.org/tdbcsqlite3
TDK ✔ ✔ ✔ subset of Tcl Dev Kit from https://github.com/tcltk/tdk
tdom 0.9.1 ✔ ✔ ✔ ✔ XML/DOM/XPath/XSLT implementation for Tcl, http://tdom.org/index.html
tfirmata 2.5? ✔ ✔ ✔ ✔ Tcl implementation of Arduino Firmata, http://www.p-code.org/tfirmata
Thread 2.8.4 ✔ ✔ ✔ ✔ Tcl thread extension, http://core.tcl-lang.org/thread

tile-extras various ✔ ✔ ✔ ✔ Misc. bag of Tk packages related to the Tile widget set,
https://github.com/jenglish/tile-extras

Tix 8.4.3 ✔ Alternate widget set, http://tix.cvs.sourceforge.net/tix/tix
tk 8.6.9 ✔ ✔ ✔ ✔ Tk toolkit, http://www.tcl-lang.org
tkcon 2.7 ✔ ✔ ✔ ✔ Tk console, http://tkcon.sourceforge.net

tkconclient 1.0 ✔ ✔ ✔ ✔ Remote support for Tk console, borrowed from Tcl wiki, part of
AndroWish

TkDND 2.9.2 - ✔ ✔ ✔ Tk drag and drop interface, https://github.com/petasis/tkdnd
Tkhtml 3.0 ✔ ✔ ✔ ✔ Tk HTML widget, http://tkhtml.tcl-lang.org.tk

tkinspect 5.1.6 ✔ ✔ ✔ ✔ Tool to inspect contents of other running Tk applications,
http://sourceforge.net/projects/tkcon/files

tklib 0.6 ✔ ✔ ✔ ✔ Tk standard library, http://core.tcl-lang.org/tklib

tkpath 0.3.3 ✔ ✔ ✔ ✔ Alternate canvas widget with SVG like capabilities,
https://bitbucket.org/andrew_shadura/tkpath

http://www.androwish.org/index.html/dir?name=assets/pdf4tcl_graph1.0
http://sesam-gmbh.org/images/Downloads/Public/pdf4tcl_graph.zip
http://www.androwish.org/index.html/dir?name=undroid/piio
http://chiselapp.com/user/schelte/repository/piio
http://www.androwish.org/index.html/dir?name=assets/promise1.1.0
http://tcl-promise.magicsplat.com
http://www.androwish.org/index.html/dir?name=jni/tclral
http://chiselapp.com/user/mangoa01/repository/tclral
http://www.androwish.org/index.html/dir?name=jni/tclral
http://chiselapp.com/user/mangoa01/repository/tclral
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=jni/rl_json
https://github.com/RubyLane/rl_json
http://www.androwish.org/index.html/dir?name=assets/tclrmq1.4.1
https://github.com/flightaware/tclrmq
http://www.androwish.org/index.html/dir?name=assets/snap70.1
http://snap7.sourceforge.net/
http://www.androwish.org/index.html/dir?name=jni/snack
http://www.speech.kth.se/snack
http://www.androwish.org/index.html/dir?name=assets/tclsoap1.6.8
http://sourceforge.net/projects/tclsoap
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/sqlite3.28.0
http://www.sqlite.org
http://www.androwish.org/index.html/dir?name=assets/stardom0.42
http://wiki.tcl-lang.org/3895
http://www.androwish.org/index.html/dir?name=jni/tbcload
http://wiki.tcl-lang.org/2624
http://www.androwish.org/index.html/dir?name=jni/tcl
http://www.tcl-lang.org
http://www.androwish.org/index.html/dir?name=undroid/tcl-augeas
https://github.com/dbohdan/tcl-augeas
http://www.androwish.org/index.html/dir?name=undroid/tclcan
http://www.androwish.org/index.html/dir?name=jni/tclcsv
http://tclcsv.magicsplat.com/
http://www.androwish.org/index.html/dir?name=jni/TclCurl
https://github.com/flightaware/tclcurl-fa
http://www.androwish.org/index.html/dir?name=jni/tclepeg
https://github.com/dzach/tclepeg
http://www.androwish.org/index.html/dir?name=jni/tclJBlend
https://sourceforge.net/projects/irrational-numbers/files
http://www.androwish.org/index.html/dir?name=assets/tcllib1.19
http://core.tcl-lang.org/tcllib
http://www.androwish.org/index.html/dir?name=jni/tcl-lmdb
https://sites.google.com/site/ray2501/tcl-lmdb
http://www.androwish.org/index.html/dir?name=jni/tclmixer
http://sqlitestudio.pl/tclmixer
http://www.androwish.org/index.html/dir?name=jni/tcluvc
http://www.androwish.org/index.html/dir?name=undroid/tclwmf
http://www.androwish.org/index.html/dir?name=jni/tclx
https://github.com/flightaware/tclx
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbc1.1.0
http://core.tcl-lang.org/tdbc
http://www.androwish.org/index.html/dir?name=assets/tdbcjdbc-0.1
https://github.com/ray2501/TDBCJDBC
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcmysql1.1.0
http://core.tcl-lang.org/tdbcmysql
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcodbc1.1.0
http://core.tcl-lang.org/tdbcodbc
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcpostgres1.1.0
http://core.tcl-lang.org/tdbcpostgres
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/tdbcsqlite3-1.1.0
http://core.tcl-lang.org/tdbcsqlite3
http://www.androwish.org/index.html/dir?name=undroid/TDK
https://github.com/tcltk/tdk
http://www.androwish.org/index.html/dir?name=jni/tdom
http://tdom.org/index.html
http://www.androwish.org/index.html/dir?name=assets/tfirmata
http://www.p-code.org/tfirmata
http://www.androwish.org/index.html/dir?name=jni/tcl/pkgs/thread2.8.4
http://core.tcl-lang.org/thread
http://www.androwish.org/index.html/dir?name=assets/tile-extras
https://github.com/jenglish/tile-extras
http://www.androwish.org/index.html/dir?name=jni/Tix
http://tix.cvs.sourceforge.net/tix/tix
http://www.androwish.org/index.html/dir?name=jni/sdl2tk
http://www.tcl-lang.org
http://www.androwish.org/index.html/dir?name=assets/tkcon2.7
http://tkcon.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/tkconclient1.0
http://www.androwish.org/index.html/dir?name=undroid/tkdnd
https://github.com/petasis/tkdnd
http://www.androwish.org/index.html/dir?name=jni/tkhtml
http://tkhtml.tcl-lang.org
http://www.androwish.org/index.html/dir?name=assets/tkinspect5.1.6
http://sourceforge.net/projects/tkcon/files
http://www.androwish.org/index.html/dir?name=assets/tklib0.6
http://core.tcl-lang.org/tklib
http://www.androwish.org/index.html/dir?name=jni/tkpath
https://bitbucket.org/andrew_shadura/tkpath

tksqlite 0.5.13 ✔ ✔ ✔ ✔ GUI frontend to sqlite3, http://reddog.s35.xrea.com/wiki/TkSQLite.html
tksvg 0.1 ✔ ✔ ✔ ✔ Read SVG to Tk photo images, https://github.com/auriocus/tksvg
Tktable 2.11 ✔ ✔ ✔ ✔ Tk table widget, http://tktable.sourceforge.net
tkvlc 0.7 - ✔ ✔ ✔ Video playback using libVLC, https://github.com/ray2501/tkvlc

tktray 1.3.9 - - - ✔ Manage system tray icons with Tk on X11,
http://code.google.com/p/tktray

Tkzinc 3.3.6 ✔ ✔ ✔ ✔ TkZinc widget, similar to Tk's canvas,
https://bitbucket.org/plecoanet/tkzinc

tls 1.6.7 ✔ ✔ ✔ ✔ Tcl interface to OpenSSL/LibreSSL, http://tls.sourceforge.net

topcua 0.1 ✔ ✔ ✔ ✔ Proof of concept Tcl binding to https://open62541.org, part of
AndroWish

treectrl 2.4.2 ✔ ✔ ✔ ✔ Tk tree widget, http://sourceforge.net/projects/tktreectrl

Trf 2.1.4 ✔ ✔ ✔ ✔ Transformation procedure framework for Tcl channels,
http://tcltrf.sourceforge.net

trofs 0.4.9 ✔ ✔ ✔ ✔ Tcl read-only filesystem, http://math.nist.gov/~DPorter/tcltk/trofs

tserialport 1.1 ✔ ✔ ✔ Alexander Schoepe's extension to query serial ports,
https://tcl.sowaswie.de/tserialport

TWAPI 4.3.5 - ✔ - - Tcl Windows API extension, http://twapi.magicsplat.com
udp 1.0.11 ✔ ✔ ✔ ✔ UDP sockets, http://core.tcl-lang.org/tcludp
ukaz 2.0a3 ✔ ✔ ✔ ✔ Graph widget written in pure Tcl/Tk, http://github.com/auriocus/ukaz

upnp 0.2 ✔ ✔ ✔ ✔ Universal Plug and Play,
http://chiselapp.com/user/schelte/repository/upnp

usbserial 1.0 ✔ - - - Support for USB serial converters, part of AndroWish, see usbserial
command

v4l2 0.1 - - - ✔ Video For Linux Two interface, see v4l2 command

VecTcl 0.3 ✔ ✔ ✔ ✔ Numerical math in Tcl, http://auriocus.github.io/VecTcl

VecTcLab ✔ ✔ ✔ ✔ Console for VecTcl derived from tkcon,
http://github.com/auriocus/VecTcLab

vfs 1.4.2 ✔ ✔ ✔ ✔ Virtual file system in Tcl, http://sourceforge.net/projects/tclvfs
vnc 0.4 ✔ ✔ ✔ ✔ VNC viewer widget, http://ch-werner.de/tkvnc

vlerq 4.1 ✔ ✔ ✔ ✔ Package for managing structured datasets in Tcl,
http://equi4.com/vlerq.org

vu 2.3 ✔ ✔ ✔ ✔ Various Tk widgets, http://tktable.sf.net
wibble 0.4 ✔ ✔ ✔ ✔ Small web server, http://chiselapp.com/user/andy/repository/wibble
WiTS 3.2.3 - ✔ - - Windows Inspection Tool Set, http://windowstoolset.sourceforge.net
WS 2.6.0 ✔ ✔ ✔ ✔ Tcl interface to web services, http://core.tcl-lang.org/tclws
xml 3.2 ✔ Tcl interface to XML, http://sf.net/projects/tclxml
XOTcl 1.6.8 ✔ ✔ ✔ ✔ Extended Object Tcl, http://next-scripting.org
zbar 0.10 ✔ ✔ ✔ ✔ Barcode scanner, http://zbar.sourceforge.net, see zbar command
zint 2.6.3 ✔ ✔ ✔ ✔ Barcode generation, http://sourceforge.net/projects/zint

http://www.androwish.org/index.html/dir?name=assets/tksqlite0.5.13
http://reddog.s35.xrea.com/wiki/TkSQLite.html
http://www.androwish.org/index.html/dir?name=jni/tksvg
https://github.com/auriocus/tksvg
http://www.androwish.org/index.html/dir?name=jni/tktable
http://tktable.sourceforge.net
http://www.androwish.org/index.html/dir?name=undroid/tkvlc
https://github.com/ray2501/tkvlc
http://www.androwish.org/index.html/dir?name=jni/tktray
http://code.google.com/p/tktray
http://www.androwish.org/index.html/dir?name=jni/tkzinc
https://bitbucket.org/plecoanet/tkzinc
http://www.androwish.org/index.html/dir?name=jni/tls
http://tls.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/topcua
https://open62541.org
http://www.androwish.org/index.html/dir?name=jni/tktreectrl
http://sourceforge.net/projects/tktreectrl
http://www.androwish.org/index.html/dir?name=jni/trf
http://tcltrf.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/trofs
http://math.nist.gov/~DPorter/tcltk/trofs
http://www.androwish.org/index.html/dir?name=undroid/tserialport
https://tcl.sowaswie.de/tserialport
http://www.androwish.org/index.html/dir?name=undroid/twapi
http://twapi.magicsplat.com
http://www.androwish.org/index.html/dir?name=jni/tcludp
http://core.tcl-lang.org/tcludp
http://www.androwish.org/index.html/dir?name=assets/ukaz2.0
http://github.com/auriocus/ukaz
http://www.androwish.org/index.html/dir?name=assets/upnp0.2
http://chiselapp.com/user/schelte/repository/upnp
http://www.androwish.org/index.html/dir?name=jni/src
http://www.androwish.org/index.html/dir?name=undroid/v4l2
http://www.androwish.org/index.html/dir?name=jni/VecTcl
http://auriocus.github.io/VecTcl
http://www.androwish.org/index.html/dir?name=jni/VecTcl
http://github.com/auriocus/VecTcLab
http://www.androwish.org/index.html/dir?name=jni/tclvfs
http://sourceforge.net/projects/tclvfs
http://www.androwish.org/index.html/dir?name=jni/tkvnc
http://ch-werner.de/tkvnc
http://www.androwish.org/index.html/dir?name=jni/tclkit
http://equi4.com/vlerq.org
http://www.androwish.org/index.html/dir?name=jni/vu
http://tktable.sf.net
http://www.androwish.org/index.html/dir?name=assets/wibble0.4
http://chiselapp.com/user/andy/repository/wibble
http://www.androwish.org/index.html/dir?name=undroid/wits
http://windowstoolset.sourceforge.net
http://www.androwish.org/index.html/dir?name=assets/tclws2.6.0
http://core.tcl-lang.org/tclws
http://www.androwish.org/index.html/dir?name=jni/tclxml
http://sf.net/projects/tclxml
http://www.androwish.org/index.html/dir?name=jni/xotcl
http://next-scripting.org
http://www.androwish.org/index.html/dir?name=jni/ZBar
http://zbar.sourceforge.net
http://www.androwish.org/index.html/dir?name=jni/zint
http://sourceforge.net/projects/zint

Beyond AndroWish
Some subdirectories of AndroWish have a ready-to-build-then-use Debian infrastructure built in. That allows to build
Debian packages easily e.g. on a Raspbian distribution running on your Raspberry Pi:

 cd .../jni/SDL2 ; dpkg-buildpackage -tc -uc ; dpkg -i ../libsdl2*.deb
 cd .../jni/tcl ; dpkg-buildpackage -tc -uc ; dpkg -i ../sdltcl*.deb
 cd .../jni/sdl2tk ; dpkg-buildpackage -tc -uc ; dpkg -i ../sdl2tk*.deb
 /opt/sdltk86/bin/sdl2wish8.6

Building some components of AndroWish for the Windows OS family is possible, too, by using cross compilation on a
Linux system. More information can be found in undroidwish.

The resulting sdl2wish8.6, sdl2wish86.exe, or undroidwish binaries support additional command line options to
control certain SDL features. Important: these options must be specified on the command line after the optional script
to be executed:

-sdlfullscreen

Make the SDL window (the root window for Tk) into a fullscreen window.

-sdlresizable

Allow resizing of the SDL window.

-sdlnoborder

Make the SDL window borderless, i.e. without window manager decorations.

-sdlheight pixels

Set the height of the SDL window to pixels.

-sdlwidth pixels

Set the width of the SDL window to pixels.

-sdlrootheight pixels

Set the height of the root window (as seen by Tk) to pixels. If not set, the root window's size is equal to
the SDL window size.

-sdlrootwidth pixels

Set the width of the root window (as seen by Tk) to pixels. If not set, the root window's size is equal to
the SDL window size.

-sdlxdpi dpi

Set the dots per inch ratio for the X dimension to dpi. If both, -sdlxdpi and -sdlydpi are not set, the
default is approx. 75 dpi. If only one dimension is set (-sdlxdpi or -sdlydpi), that value is taken as overall
dots per inch ratio.

-sdlydpi dpi

Set the dots per inch ratio for the Y dimension to dpi. If both, -sdlxdpi and -sdlydpi are not set, the
default is approx. 75 dpi. If only one dimension is set (-sdlxdpi or -sdlydpi), that value is taken as overall
dots per inch ratio.

-sdlnogl

Force using the software renderer. This turns OpenGL usage off.

-sdllog level

Set the minimum log level to be shown in SDL log message. level must be a positive integer.

-sdlicon filename

Set the SDL root window icon to the BMP image from filename.

-sdlnosysfonts

Don't search for and register system fonts. This can reduce startup time significantly.

-sdlopacity value

Set the initial opacity of the SDL root window. value must be given as positive integer percentage.

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.debian.org
http://www.raspbian.org
http://www.androwish.org/index.html/wiki?name=AndroWish

-sdlswcursor

Force use of a software cursor texture. Useful, when no proper hardware cursor support is available, e.g.
in Haiku using the OpenGL render driver.

Some SDL runtime switches must be specified early by setting environment variables. All these switches are
documented in the SDL_hints.h header file. The most important are:

SDL_VIDEODRIVER

A string selecting the video driver, use it to enable the jsmpeg video driver.

SDL_RENDER_DRIVER

A string selecting the SDL renderer. Normally chosen automatically but sometimes it can be necessary to
explicitly turn on the software renderer. Other possible values depend on how SDL was built, e.g opengl,
opengles2 etc.

ble command

ble command

Name

ble - interact with Bluetooth Low Energy (BLE) devices. Requires Android 4.3 or higher.

Synopsis

package require Ble
ble subcommand ?options?

Description

This command is used to deal with Bluetooth Low Energy (BLE) devices. The legal subcommands (which may be
abbreviated) are:

ble abort handle

Abort the current write transaction on the BLE connection identified by handle which was obtained earlier
by a ble connect command. Returns an integer indicating success (1), failure (0), or system error (less
than 0).

ble begin handle

Starts a write transaction on the BLE connection identified by handle which was obtained earlier by a ble
connect command. Returns an integer indicating success (1), failure (0), or system error (less than 0).

ble callback handle ?callback?

If the callback argument is provided that argument replaces the callback function on the BLE connection
identified by handle and returns the old callback function. Otherwise the current callback function is
returned. In contrast to e.g. the Tk event bind mechanism, the callback argument has not all the freedom
of a Tcl bind script, i.e. it must be a single command and be parseable as a list since internally the Tcl core
function Tcl_EvalObjv() is used for executing the callback instead of the Tcl_Eval*() function family
supporting full scripts.

ble characteristics handle suuid sinstance

Returns a list of characteristics of the service described by its UUID suuid and instance number sinstance
on the BLE connection handle. The list is layed out as a table with the five columns characteristic UUID,
characteristic instance number, permissions, properties, and write type suitable for iterating using foreach
{cuuid cinstance perm prop wrtype} [ble characteristics ...] {...}.

ble close handle

Closes the BLE connection identified by handle which was obtained earlier by a ble connect or ble scanner
command.

ble connect address callback ?flag?

Connects to the Bluetooth LE device with address address (expressed as six hexadecimal 8 bit numbers
separated by colons, like a Ethernet MAC address), and arranges for the callback command to be invoked
on events on the connection to this device. The optional flag is a boolean with default false controlling
automatic connection setup (see the Android documentation for more details). The callback command is
called with two additional arguments, the first is a string (connection, scan, service, characteristic,
descriptor, or transaction) indicating the kind of event, the second is a dictionary with event related
information, see the section Event Data below. For restrictions of the callback argument see the
description in ble callback above. The result of the ble connect command is a handle (a string identifying
the BLE connection) to be used in other ble subcommands. During connection establishment an automatic
discovery takes place which detects all advertised services, characteristics, and descriptors of the remote
Bluetooth LE device.

ble descriptors handle suuid sinstance cuuid cinstance

Returns a list of descriptors of the service and characteristic described by its UUIDs suuid and cuuid and
instance numbers sinstance and cinstance on the BLE connection handle. The list is layed out as a table
with the two columns descriptor UUID and permissions suitable for iterating using foreach {duuid perm}
[ble descriptors ...] {...}.

ble disable handle suuid sinstance cuuid cinstance

Turns off notifications of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0).

https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html

ble disconnect handle

Initiates a disconnect of the BLE connection handle if the current connection state is disconnected. When
the operation completes the callback function of the connection is invoked.

ble dread handle suuid sinstance cuuid cinstance duuid

Initiates the read of a descriptor of the BLE connection handle identified by suuid (128 bit service UUID),
sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), cinstance
(characteristic identifier, integer, usually 0), and duuid (128 bit descriptor UUID). The result is a positive
integer when the descriptor read operation is in progress, 0 or negative on error. The completion of the
descriptor read operation is indicated through the callback function of the connection.

ble dwrite handle suuid sinstance cuuid cinstance duuid value

Initiates the write of a descriptor of the BLE connection handle identified by suuid (128 bit service UUID),
sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), cinstance
(characteristic identifier, integer, usually 0), and duuid (128 bit descriptor UUID). value is the value to be
written and should be a string or byte array. The result is a positive integer when the descriptor write
operation is in progress, 0 or negative on error. The completion of the descriptor write operation is
indicated through the callback function of the connection.

ble enable handle suuid sinstance cuuid cinstance

Turns on notifications of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0).

ble equal handle uuid1 uuid2

Tests if the given UUIDs are equal. Both can be specified in abbreviated form and are expanded before
comparison. Returns true, if the UUIDs are the same. Unknown abbreviated or long UUIDs with respect to
the connection handle compare always to false.

ble execute handle

Dispatches execute (commit) of the current write transaction which was started earlier using ble begin on
the BLE connection identified by handle which was obtained earlier by a ble connect command. Returns an
integer indicating success (1), failure (0), or system error (less than 0). The result of the transaction is
reported in the callback with event kind transaction.

ble expand handle uuid

Expands the given (abbreviated, short) UUID to its 128 bit (long, canonical) form and returns a 128 bit
UUID string. An error is reported if an abbreviated or long UUID is unknown with respect to the connection
handle.

ble getrssi handle

Requests remote SSI information from the BLE connection identified by handle which was obtained earlier
by a ble connect command. Returns an integer indicating success (1), failure (0), or system error (less
than 0). The updated remote SSI is reported in later callbacks.

ble info ?handle?

Returns information of the BLE connection identified by handle as a dictionary made up the fields handle
(the connection identifier), address (Bluetooth address), and state (connection state, one of disconnected,
discovery, scanning, connected, or idle. If handle is omitted, a list of all known connection identifiers is
returned.

ble pair address

Initiates pairing with the Bluetooth device with address address (expressed as six hexadecimal 8 bit
numbers separated by colons, like a Ethernet MAC address).

ble read handle suuid sinstance cuuid cinstance

Initiates the read of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0). The result is a positive integer when the read
operation is in progress, 0 or negative on error. The completion of the read operation is indicated through
the callback function of the connection.

ble reconnect handle

Initiates a reconnect of the BLE connection handle if the current connection state is disconnected. When
the operation completes the callback function of the connection is invoked with information on the new
connection state.

ble scanner callback

Creates a BLE connection to be used for detection (scan) of BLE devices and returns a handle (a string
identifying the BLE scanner) to be used to deal with this scanner and arranges for the callback command
to be invoked on events on the connection. See the description of ble connect and the section Event
Data for more details on the callback argument.

ble services handle

Returns a list of services of the BLE connection handle. The list is layed out as a table with the three
columns service UUID, service instance number, and service type suitable for iterating using foreach
{suuid sinstance type} [ble services ...] {...}.

ble shorten handle uuid

Shorten the given (long, canonical) UUID to its shortest (16 or 32 bit) form. An error is reported if the
long UUID is unknown with respect to the connection handle. If no unique abbreviation is found, the full
128 bit UUID is returned.

ble start handle

Starts scanning for BLE devices. Scan status and scan results are indicated by invocations of the callback
function given to the corresponding ble scanner command.

ble stop handle

Stops scanning for BLE devices. Scan status is indicated by invocations of the callback function given to
the corresponding ble scanner command.

ble unpair address

Initiates release of the pairing with the Bluetooth device with address address (expressed as six
hexadecimal 8 bit numbers separated by colons, like a Ethernet MAC address).

ble userdata handle ?data?

Associate or retrieve user data with the BLE connection handle. When data is given it replaces the former
associated user data. When omitted, the current user data or an empty list is returned.

ble write handle suuid sinstance cuuid cinstance value

Initiates the write of a characteristic of the BLE connection handle identified by suuid (128 bit service
UUID), sinstance (service instance identifier, integer, usually 0), cuuid (128 bit characteristic UUID), and
cinstance (characteristic identifier, integer, usually 0). value is the value to be written and should be a
string or byte array. The result is a positive integer when the write operation is in progress, 0 or negative
on error. The completion of the write operation is indicated through the callback function of the connection.
Note: not all Android implementations allow more than one active command (example, issuing a "ble read"
immediately after a "ble write"). For best compatibility, you should wait for the callback that your write
operation has completed before issuing the next ble write/read command.

Abbreviated UUIDs

The 128 bit UUID arguments to ble commands can be specified in abbreviated 16 or 32 bit form as long as the value
is unique with respect to the UUIDs learned during the discovery phase. Examples:

 TI SensorTag Base UUID: F0000000-0451-4000-B000-000000000000

 IR Temperature Sensor Service: F000AA00-0451-4000-B000-000000000000
 abbreviated (32 bit): F000AA00
 abbreviated (16 bit): AA00

 IR Temperature Sensor Value: F000AA01-0451-4000-B000-000000000000
 abbreviated (32 bit): F000AA01
 abbreviated (16 bit): AA01

 Generic descriptor for notify: 00002902-0000-1000-8000-00805F9B34FB
 abbreviated (32 bit): 00002902
 abbreviated (16 bit): 2902

Event Data

The first argument to callback functions is the type of event, as described below.

connection

Indicates change in connection state.

scan

Indicates change in scan state or reports newly detected Bluetooth LE devices.

service

Information about a service.

characteristic

Information about a characteristic, used for data exchange.

descriptor

Information about a descriptor (meta information of a characteristic).

transaction

Indicates status of a write transaction.

The second argument to callback functions is a dictionary with keys depending on the kind of the event. The following
paragraphs list the various event formats.

handle h state s

Connection state event for ble scan. state can be one of scanning or idle.

handle h address a state s rssi r

Connection state event for ble connect. state can be one of disconnected, discovery, or connected. In
the discovery phase the services, characteristics, and descriptors of the remote device are gathered. The
rssi field contains the last read remote SSI (signal strength indicator) in dBm as integer number.

handle h state s address a name n type t rssi r

Scan result event. address is the Bluetooth address of the remote device, name it's advertised friendly
name, type the device type as integer, rssi the receive SSI in dBm as integer.

handle h address a state s rssi r suuid su sinstance si type t

Service discovery event. suuid is the UUID of the service, sinstance the instance of that service as integer
number. Refer to BluetoothGattService for details.

handle h address a state s rssi r suuid su sinstance si cuuid ci cinstance ci permissions p properties q
writetype w access a value v

Characteristic event. cuuid is the UUID of the characteristic, cinstance the instance of that characteristic
as integer number. The items permission, properties, and writetype are integer numbers, too. The
access item contains a one letter code indicating the type of access ('c' for change notification, 'd' for
discovery, 'r' for read, 'w' for write). The value item holds the data of the characteristic as a byte array.
It's interpretation is device/characteristic depending. This event is reported during discovery and normal
operation when ble read or ble write are performed locally or notifications for the characteristic are
enabled using ble enable. Refer to BluetoothGattCharacteristic for details.

handle h address a state s rssi r suuid su sinstance si cuuid ci cinstance ci duuid di permissions p
access a value v

Descriptor event. duuid is the UUID of the descriptor. The item permission is an integer number, too. The
access item contains a one letter code indicating the type of access ('d' for discovery, 'r' for read, 'w' for
write). The value item holds the data of the descriptor as a byte array. It's interpretation is
device/characteristic/descriptor depending. This event is reported during discovery and normal operation
when ble dread or ble dwrite are performed locally. Refer to BluetoothGattDescriptor for details.

handle h success s

Transaction result event. success is the transaction result and is 1 for success or 0 for failure.

Example

The following example scans for Bluetooth LE devices, connects to a TI SensorTag and enables notifications of the
buttons of the device.

 proc ble_handler {what data} {
 switch -- $what {
 scan {
 if {[dict get $data name] eq "SensorTag"} {
 # found the TI SensorTag, connect it, stop the scanner
 ble connect [dict get $data address] ble_handler 1
 ble close [dict get $data handle]
 }
 }
 connection {
 if {[dict get $data state] == "disconnected"} {
 # fall back to scanning
 ble close [dict get $data handle]
 ble start [ble scanner ble_handler]
 } elseif {[dict get $data state] == "connected"} {

https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattDescriptor.html
http://www.ti.com/tool/cc2541dk-sensor

 # if the TI SensorTag buttons were found,
 # it will be enabled for notifications now
 set handle [dict get $data handle]
 set cmd [ble userdata $handle]
 if {$cmd ne {}} {
 if {[{*}$cmd]} {
 # success, clear userdata
 ble userdata $handle {}
 }
 }
 }
 }
 descriptor {
 if {[string match "*2902-*" [dict get $data duuid]] &&
 [string match "*FFE1-*" [dict get $data cuuid]]} {
 # descriptor for TI SensorTag buttons found
 set flag 0
 # notification enable state, 16 bit little-endian
 # 0x0000 = disabled, 0x0001 = enabled
 binary scan [dict get $data value] s flag
 if {!$flag} {
 # later turn on notifications of button changes
 set handle [dict get $data handle]
 ble userdata $handle [list ble enable $handle \
 [dict get $data suuid] [dict get $data sinstance] \
 [dict get $data cuuid] [dict get $data cinstance]]
 }
 }
 }
 }
 # dump data to stdout
 if {[dict exists $data value]} {
 # make hex string from byte array
 binary scan [dict get $data value] H* value
 dict set data value $value
 }
 puts "$what: $data"
 }

 ble start [ble scanner ble_handler]

Build custom Androwish

Starting point

Starting point is the description by Christian at http://www.androwish.org/index.html/wiki?name=Building+AndroWish
and the following quote from wiki page Androwish:

Please fetch the sources (the big .tar.bz2), unpack it, have Android SDK and NDK installed, don't use Eclipse, adapt
local.properties to where you've installed Android SDK, have your PATH properly set so that ndk-build can do its job,
then invoke "ant debug", be patient, and you'll finally will have bin/AndroWish-debug.apk ready to be installed onto
your device. I have never verified the build process in combination with Eclipse. Once upon a time, I did my very first
steps using the tips from the SDL documentation regarding Android.

When you want to wrap your own app written as Tcl code, you should add it below assets/app, have the launching
script as main.tcl, fiddle the toplevel AndroidManifest.xml to have your app/class name in, remove that
AndroWishScript/Launcher stuff from the manifest (since not needed for a standalone app), derive your app main
class (yes, some Java required) from src/tk/tcl/wish/AndroWish.java, e.g.

import tk.tcl.wish.AndroWish;
public class TclTkRules extends AndroWish {}

fiddle the res directory with a new really kooool icon and title for your app.

Build Androwish

Get Source

A release source is on the web site. If an intermediate version should be used, one may clone the fossil repository and
check out the latest checkin on trunk:

fossil clone http://anonymous:F4DC0163@www.androwish.org androwish.fossil
mkdir androwish
cd androwish
fossil open ../androwish.fossil
rm .fslckout

Try on Windows

Windows build stopped with ndk-build with a "command line to long" error. I tried cmd.exe and cygwin shell, same
result.

This should be fixed since check-in [52a07071b99fa88a] and was verified on Windows 8.1 32 bit using Android NDK
r12b and Android SDK 24.4.1.

Try on OSX

NDK: I downloaded android-ndk-r10e-darwin-x86_64.bin - then chmod +x, execute it, and move extracted files to
/usr/local/android-ndk

Added this to ~/.bash_profile:

export NDK_PROJECT_PATH=/usr/local/android-ndk
export ANDROID_HOME=~/Library/Android/sdk
export PATH=${PATH}:~/android-sdk-mac/tools:/usr/local/android-ndk

edited "project.properties" to update the android target number.

Project target.
target=android-21

To build:

cd ~/Documents/androwish
export NDK_PROJECT_PATH=`pwd`
ant debug

"ant debug" runs for about 30 minutes, and ends with

BUILD SUCCESSFUL

Try on CentOS 6

http://wiki.tcl.tk/41282
http://www.androwish.org/index.html/honeypot

Failed for me due to a to old clib.

Christian: remarked that he is using CentOS 6 or Ubuntu 12.04 LTS with Andriod NDK 9d. So this failure might be due
to the fact, that I tried Android NDK 10d.

OpenSuSE 13.2 64 bit

I installed VirtualBox on my Windows 8.1 and OpenSuSE 13.2 64 bit with 100GB HarDisk and 4GB Ram.

Added series: java development
Added packages: java-1_7_0-openjdk-devel, xerces-j2-xml-apis

Activate Java 7 (e.g. 1.7):

update-alternatives --config java
-> 1.7
update-alternatives --config javac
-> 1.7
update-alternatives --config xml-commons-apis
-> xerces-j2-xml-apis.jar

Set up Android build system:

cd ~
mkdir android
cd android
mkdir download

Downloaded in ~/android/download:

android-sdk_r24.1.2-linux.tgz
android-ndk-r9d-linux-x86_64.tar.gz
androwish-e2aee3ea2ea718e7.tar.gz (Pi Day Release, also tested with following Don Quixote Release)

Christian: suggested to use the 9d release of the ndk instead of the current 10d due to the following reasons:

still supports Android 2.3.3, like AndroWish
tiff library does not compile with 10d

The download link is:

Linux 64 bit: https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86_64.tar.bz2
Linux 32 bit: https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86.tar.bz2

Unpack and install, androwish in folder "androwish" for easier access

cd ~/android
tar xvzf download/android-sdk_r24.1.2-linux.tgz
bzip2 -d download/android-ndk-r9d-linux-x86_64.tar.bz2
tar xvf download/android-ndk-r9d-linux-x86_64.tar
tar xvf download/androwish-e2aee3ea2ea718e7.tar.gz
mv androwish-e2aee3ea2ea718e7 androwish

(start side note)

ndk 10d install instructions (if 9d is not used as above)

cd ~/android
chmod +x download/android-ndk-r10d-linux-x86_64.bin
download/android-ndk-r10d-linux-x86_64.bin

(end side note)

Open Android SDK manager:

~/android/android-sdk-linux/tools/android sdk
-> Select Google APIs ARM EABI v7a System Image
-> Unselect all other system images

Prepare build and let "android" create "local.properties":

export PATH=$PATH:~/android/android-sdk-linux/tools:~/android/android-ndk-r9d
cd androwish

android update project -p . --target 1

(the export command may be copied to ~/.bashrc to be active for each shell start)

https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86_64.tar.bz2
https://dl.google.com/android/ndk/android-ndk-r9d-linux-x86.tar.bz2

(start of side note)

Error with ndk 10d and not with 9d (e.g. only when 10d is used)

On "ant debug", I had the following build error I could not solve:

 [exec] [armeabi] Compile thumb : tiff_tkimg <= tif_predict.c
 [exec] /tmp/ccTUdnr3.s: Assembler messages:
 [exec] /tmp/ccTUdnr3.s: Error: unaligned opcodes detected in executable segment
 [exec] make: [obj/local/armeabi/objs/tiff_tkimg/libtiff/tif_predict.o] Error 1

This is in jni/tiff. So I deleted the tkimg and jni/tiff folders:

rm -rf jni/tkimg jni/tiff

The build error most likely is caused by a compiler problem. This issue is fixed in an AndroWish check-in on 2015-06-
30 by compiling libtiff to ARM instead of Thumb code. The x86 version of the compiler does not cause build errors.

(end side note)

Now, an "ant debug" succeeds for me. The result is in "androwish/bin/AndroWish-debug.apk

Great, thank you, Cristian !

Customizing Androwish

This is a customisation for the application called "HIBIScan" for the company url "elmicron.de". You should replace
those names by your own ones.

Delete not required packages

It is perhaps me, but I always try to get small packages with as less as possible included. So I deleted packages I
know and I don't need in this project:

cd jni
rm -rf 3dcanvas blt curl expect itk jpeg libxml2 nsf TclCurl tclral tcludp tclx tclxml\
 tdom tiff Tix tkimg tktable tktreectrl vu xotcl zint
cd jni/tcl-pkgs
rm -rf tdbcmysql1.0.3 tdbcsqlite3-1.0.3 itcl4.0.3 sqlite3.8.8.3 tdbcodbc1.0.3\
 thread2.7.2 tdbc1.0.3 tdbcpostgres1.0.3

cd androwish
rm -rf tkchat

cd assets
rm -rf bin blt2.4 bwidget1.9.7 Canvas3d1.2.1 expect5.45.2 gridplus2.10 icons1.2 itcl4.0.3\
 itk4.0.1 iwidgets4.1 nsf2.0.0 pdf4tcl08 ral0.11.2 ralutil0.11.2 sqlite3 TclCurl7.22.0\
 tcllib1.16 tclsoap1.6.8 tclws2.3.8 tclx8.4.1 Tclxml3.2 tdbc1.0.3 tdbcsqlite3-1.0.3 tdom0.8\
 thread2.7.2 tkimg1.4.3, tklib0.6, tksqlite0.5.11, tktable2.11 treectrl2.4.1 vu2.3

This results in an androwish size of 17MB, so 6 MB less than the full package.

Remove target x86

For most Android phones, the target armeabi is sufficient. So the target x86 might be deleted: Remove "x86" in file
jni/Application.mk to get:

APP_ABI := armeabi

This results in a final apk size of 10MB. My phone says that it takes 19.7 MB, while AndroWish takes 39.3MB.

Include own script

Now, the script tree of the application is copied to assets/app and a main.tcl is there to be started:

cd assets
mkdir app
cd app
cp <somewhere>/main.tcl .
cp -r <somewhere>/* .

An "ant debug" results in a starkit-like apk file.

Remove permissions not required for the app

In "./AndroidManifest.xml", you may delete any permission, but:

http://www.androwish.org/index.html/wiki?name=AndroWish

 <uses-permission android:name="android.permission.INTERNET" />

Application will directly terminate if not present.

Change package name

In "./AndroidManifest.xml", you should change the package name to be different to androwish. Otherwise, the
applications may not be installed together.

In "./AndroidManifest.xml"

 package="de.elmicron.hibiscan"

where "de.elmicron.hibiscan" is my internet domain and the application name as last component. This should be
adopted on request.

Add into "src/tk/tcl/wish/AndroWish.java" at the end of the include list:

import de.elmicron.hibiscan.R;

to avoid error:

none
 [javac] /home/oehhar/android/androwish-hibiscan/src/tk/tcl/wish/AndroWish.java:1519: error: package
R does not exist
 [javac] R.drawable.wish);

This error only happens after an

ant clean

Otherwise, the old class definition of "tk.tcl.wish.R" is still present in the gen source tree.

Add a derived class in "src/de/elmicron/hibiscan/HIBIScan.java". The file path is composed of "src" and the package
name, dots replaced by "/". The file name is the class name, where I used the application name.

File contents:

package de.elmicron.hibiscan;
import tk.tcl.wish.*;
public class HIBIScan extends AndroWish { }

(Christian: by private email) Then, each usage in "<activity...>" of "tk.tcl.wish.AndroWish" in "AndroidManifest.xml"
should be replaced by "de.elmicron.hibiscan.HibiScan". Here, this is done in the next step.

Remark: the usage of a derived class did not make any difference to me. I could stay with the class
"tk.tcl.wish.AndroWish". Nevertheless, Christian: recommends it. Comments welcome...

Start script directly

Loose translation of E-Mail from Christian::

The file "AndroidManifest.xml" for own applications should bette be structured similar to
".../hellotcltk/AndroidManifest.xml". The own application should not be started by the activity "AndroWishLauncher",
but better directly, using the remaining intent filter:

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

So, within the "AndroidManifest.xml" file, there are the following changes:

Use only one activity with the new class and the proposed intent-filter.
I changed the product version and class to 6.0 and numeric 600, as this is the port of an existing program,
which has version number 6. and the following changes already in other sections:
Use package name "de.elmicron.hibiscan"
Use class "de.elmicron.hibiscan.HIBIScan" instead "tk.tcl.wish.AndroWish"
Only minimal permissions

The resulting file looks like that:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="de.elmicron.hibiscan"
 android:installLocation="auto"

 android:versionCode="600"
 android:versionName="6.0">
 <application android:label="@string/app_name"
 android:icon="@drawable/androwish"
 android:allowBackup="true"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
 android:hardwareAccelerated="true">
 <activity android:name="de.elmicron.hibiscan.HIBIScan"

android:configChanges="orientation|keyboardHidden|keyboard|screenSize|mnc|mcc|locale|fontScale|uiMode"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 <!-- Android 2.3.3 -->
 <uses-sdk android:minSdkVersion="9" android:targetSdkVersion="14" />

 <!-- OpenGL ES 2.0 -->
 <uses-feature android:glEsVersion="0x00020000" />

 <!-- USB support -->
 <uses-feature android:name="android.hardware.usb.host" />

 <!-- Disable screen compatibility modes -->
 <supports-screens android:smallScreens="true"
 android:normalScreens="true"
 android:largeScreens="true"
 android:xlargeScreens="true" />

 <!-- Allow writing to external storage etc. -->
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

Resources

Change the AppName in res/values/strings.xml

Change the Androwish icons in res/drawable-*/androwish.png (Resolutions: 72x72, 48x48, 96x96, 144x144).

Remove fonts

Christian: suggestion via E-Mail: 2 additional MB's may be economized by not including the font folder
".../jni/sdl2tk/library/fonts" as follows:

cd jni/sdl2tk
mv library/fonts .

In this case, the buildin Droid* fonts are used as fallback which are included in Android firmware. They don't look so
much less attractive...

This results in a package file size of 7.8MB

On Android 5, this requires Don Quixote release (2015-04) of Androwish to run. Otherwise, Androwish does not start
on Android 5.

Release signing

Create a release key by (replace "elmicron" by your own name):

cd ~/android
keytool -genkey -v -keystore android_elmicron.keystore -alias android_elmicron -keyalg RSA -keysize
2048 -validity 10000

You get promted to a keystore password and the key values. I only filled common name and Organisation. Then you
get prompted to a key password.

This generates the file "~/android/android_elmicron.keystore".

Then add those lines to "~/android/androwish/ant.properties":

key.store=../android_elmicron.keystore
key.alias=android_elmicron
key.store.password=<mypw1>
key.alias.password=<mypw2>

and do

ant release

The final apk is in "bin/AndroWish-release.apk".

2015-06-04 Harald Oehlmann

Building AndroWish

Building AndroWish

Requirements

Android SDK (version 12 or later)
Android NDK (r7 or later)
Minimum API level support by SDL is 10 (Android 2.3.3), requested API level from project.properties is 16
(Android 4.1)
CPUs supported for native shared libraries are currently armeabi and x86. This can be changed in
jni/Application.mk.

Building and Running AndroWish

Old school using Apache ant:

1. Refresh the project settings using the android command from Android SDK: android update project
2. Review local.properties to point to the directory where the Android SDK resides.
3. Use ant to build AndroWish from scratch: ant debug. This includes building the C libraries using Android NDK.

That step can be performed separately by running ndk-build in the jni directory or by invoking ant ndk-build
4. The resulting Android APK is built to bin/AndroWish-debug.apk which can be installed onto a device or emulator

using adb install -r bin/AndroWish-debug.apk.
5. Start AndroWish on device or emulator using adb from the development system: adb shell am start

tk.tcl.wish/.AndroWishLauncher.
6. Clean the build tree with ant clean.

New style using gradlew:

1. Setup your environment regarding ANDROID_HOME and the ndk-build command e.g. by setting both a proper
PATH and ANDROID_NDK_HOME.

2. Use gradlew to build AndroWish from scratch: ./gradlew assembleDebug. As above this performs both the NDK
build and the final compile and packaging steps.

3. The resulting Android APK is built to build/outputs/apk/AndroWish-debug.apk which can be installed onto a
device or emulator using adb install -r build/outputs/apk/AndroWish-debug.apk.

4. Start AndroWish on device or emulator using adb from the development system: adb shell am start
tk.tcl.wish/.AndroWishLauncher.

5. Clean the build tree with ./gradlew clean.

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html

dmtx command

dmtx command

Name

dmtx::* - interface to the libdmtx.org Data Matrix Code scanner library.

Synopsis

package require dmtx
dmtx::decode ?options?
dmtx::async_decode ?options?

Description

These commands are used to scan Data Matrix Codes off pixel image data.

dmtx::decode photoEtc ?scale timeout?

Scans the photo image photoEtc for Data Matrix Code information. Alternatively, photoEtc can be a four
element list describing a greyscale or RGB image as a byte array. The elements must be width, height,
depth and byte array of the image in this order. The optional integer parameter scale downsamples the
image before the scan takes place. The optional timeout limits the scan process to that many milliseconds.
The command returns a three element list made up of a flag indicating success (=1) or failure (=0) of the
scan process, the amount of milliseconds spent on decoding, and the scan result as a byte array.

dmtx::async_decode photoEtc callback ?scale timeout?

Similar to dmtx::decode but the decoder is run as a background thread and the result is presented to a
callback procedure. It requires the Tcl core being built with thread support, and a running event loop
since the callback is invoked as an event or do-when-idle handler. Three additional arguments are passed
to callback: a flag indicating success (=1) or failure (=0) of the scan process, the number of milliseconds
for decoding, and the scan result as a byte array. The optional parameters scale and timeout have the
same meaning as in the dmtx::decode command. The default timeout value is 1000 milliseconds. Caution:
only a single thread instance is supported per Tcl interpreter, i.e. another asynchronous decode process
can only be started when a previous decode process has finished.

dmtx::async_decode abort

Aborts a running asynchronous decode process.

dmtx::async_decode status

Returns the current state of the asynchronous decode as a string: stopped when no asynchronous decode
thread has been started, running when a asynchronous decode is in progress, and ready when the next
asynchronous decode can be started.

dmtx::async_decode stop

Stops the background thread for asynchronous decoding if it has been implicitely started by a prior
dmtx::async_decode. This can be useful to conserve memory resources.

Environment Variables

Environment Variables

Some environment variables in the env array are setup on early startup of AndroWish.

env(EXTERNAL_FILES)

App specific directory on external storage.

env(EXTERNAL_STORAGE)

Path name of external storage (could be internal SD card).

env(EXTERNAL_STORAGE2)

Path name of external storage (real external SD card).

env(HOME)

App's home directory (internal storage), usually /data/data/tk.tcl.wish/files.

env(INTERNAL_STORAGE)

App specific directory on internal storage (identical with $env(HOME)).

env(LANG)

System language.

env(LD_LIBRARY_PATH)

Load path for shared libraries including app specific directory (usually /data/data/tk.tcl.wish/libs).

env(OBB_DIR)

On some Android versions extra stuff bundled with the app (currently unused).

env(PACKAGE_CODE_PATH)

Path name of the app's APK.

env(PACKAGE_NAME)

Package name where the app's main class comes from (tk.tcl.wish).

env(PATH)

Path for exec(n) including app specific directory

env(TMPDIR)

Path name for temporary files (usually /data/data/tk.tcl.wish/cache, fallback is value of $env(HOME)).

To test if a Tcl script is executing on the Android platform sdltk android (see sdltk command) should be used.

Example Scripts

Example Scripts And Screenshots

Many packaged example scripts can be invoked on typical Android devices by a "androwish:///<pathname>" URL on the
VFS mounted /assets folder. This works with the Android web view component, Firefox, and Chrome. For Firefox, the
last path component (the tcl file) must be URL encoded, e.g. test.tcl must be written as test%2Etcl.

Tk widget demo

androwish:///assets/sdl2tk8.6/demos/widget, source code

Screenshot taken on an i-onik TP9.7-1200QC-Ultra tablet

App Life-cylce, accelerometer, finger events

androwish:///assets/sdl2tk8.6/demos/android_demo%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/widget
http://www.androwish.org/index.html/artifact/e69fb6a25fbb39fdb238c027c67954c3d610f740
androwish:///assets/sdl2tk8.6/demos/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/053ec4dd63c7eda1afbee5bc12abf6cf6cde2a2e

Screenshot taken on a Lenovo Yoga 8 tablet

Accelerometer with canvas widget

androwish:///assets/sdl2tk8.6/demos/android_accel%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_accel%252Etcl
http://www.androwish.org/index.html/artifact/667617d60642f61bb50a8748d57e9752542c55c2

Screenshot taken on a Lenovo Yoga 8 tablet

Device sensors

androwish:///assets/sdl2tk8.6/demos/android_sensors%2Etcl, source code

Screenshot taken on a Lenovo Yoga 8 tablet

Compass using magnetic field sensor and accelerometer

androwish:///assets/sdl2tk8.6/demos/android_compass%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_sensors%252Etcl
http://www.androwish.org/index.html/artifact/10d05e3afbea27ba9b265d687bb5c4339400c6d7
androwish:///assets/sdl2tk8.6/demos/android_compass%252Etcl
http://www.androwish.org/index.html/artifact/35c23bc3dba9e8a76c66238c4515f497fdc4e49e

Screenshot taken on a Lenovo Yoga 8 tablet

Pinch-to-zoom with canvas widget

androwish:///assets/sdl2tk8.6/demos/android_zoom%2Etcl, source code

Eliza: speech recognition and speech-to-text

androwish:///assets/sdl2tk8.6/demos/android_eliza%2Etcl, source code

TclMixer: audio output and mod music playback

androwish:///assets/tclmixer1.2.3/test%2Etcl, source code

Simple VNC viewer

androwish:///assets/vnc0.4/vncviewer%2Etcl, source code

Screenshot taken on ASUS Fonepad K004 ME371G

Barcode generation using ZINT

androwish:///assets/zint2.5.0/demo%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_zoom%252Etcl
http://www.androwish.org/index.html/artifact/3249f06d13bb8cc12fec03904b2d1f457d9990bd
androwish:///assets/sdl2tk8.6/demos/android_eliza%252Etcl
http://www.androwish.org/index.html/artifact/005f6c74f7d50746234e7a2a37aae2e139e47097
androwish:///assets/tclmixer1.2.3/test%252Etcl
http://www.androwish.org/index.html/artifact/698da6411516e6c6c11c0d671d4cfa3e5f0a3f03
androwish:///assets/vnc0.4/vncviewer%252Etcl
http://www.androwish.org/index.html/artifact/4cd95e6bb9d81ef3d5cde7e1cc8b48a605ddad0c
androwish:///assets/zint2.5.0/demo%252Etcl
http://www.androwish.org/index.html/artifact/c5bb41c7eeeb7d4f71eff2a7b662d7005b442766

Screenshot taken on a HTC One V smartphone

GPS/NMEA display

androwish:///assets/sdl2tk8.6/demos/android_gps%2Etcl, source code

Screenshot taken on a HTC One V smartphone

Walkie-talkie using snack and UDP multicast

androwish:///assets/snack2.2.10/tcl_talkie%2Etcl, source code

Simple chat using Bluetooth serial port profile (SPP)

androwish:///assets/sdl2tk8.6/demos/android_btchat%2Etcl, source code

TkSQLite database frontend for SQLite

androwish:///assets/tksqlite0.5.11/tksqlite%2Etcl, source code

androwish:///assets/sdl2tk8.6/demos/android_gps%252Etcl
http://www.androwish.org/index.html/artifact/f3dc47b6c9bda26fa75b2f8aff1776be62df8e64
androwish:///assets/snack2.2.10/tcl_talkie%252Etcl
http://www.androwish.org/index.html/artifact/ef0cfc9d2c169be01954b0ac07820b7910d2e1ba
androwish:///assets/sdl2tk8.6/demos/android_btchat%252Etcl
http://www.androwish.org/index.html/artifact/a50231f216f6196323065450eb69d32865a9c254
androwish:///assets/tksqlite0.5.11/tksqlite%252Etcl
http://www.androwish.org/index.html/artifact/a293b150934cbb7a79233c5e44b44dcd7c50e435

Screenshot taken on a Lenovo Yoga 8 tablet

Canvas 3D using camera for texturing cube surfaces

androwish:///assets/Canvas3d1.2.1/demo/photocube%2Etcl, source code

Screenshot taken on a Lenovo Ideatab A3000-H tablet

Interactive MIDI music

androwish:///assets/music0.1/music%2Etcl, source code

androwish:///assets/Canvas3d1.2.1/demo/photocube%252Etcl
http://www.androwish.org/index.html/artifact/d0f68f21fb0e44bbe3f0a2ea60fec938efb8aac6
androwish:///assets/music0.1/music%252Etcl
http://www.androwish.org/index.html/artifact/5e178cdc6d4b25834775a0f57a0126db8ecffd92

Screenshot taken on a Lenovo Ideatab A3000-H tablet

Piano, a pocket synthesizer

androwish:///assets/music0.1/piano%2Etcl, source code

Data Matrix Code scanner using camera and dmtx command

androwish:///assets/dmtx0.7.5/android_demo%2Etcl, source code

Barcode scanner using camera and zbar command

androwish:///assets/zbar0.10/android_demo%2Etcl, source code

Minimalist WebCam in ≈ 100 LOC

androwish:///assets/sdl2tk8.6/demos/android_webcam%2Etcl, source code

Tkbugz, a game requiring a VR headset and a USB or Bluetooth joystick

androwish:///assets/tkbugz/vr_bugz%2Etcl, source code

androwish:///assets/music0.1/piano%252Etcl
http://www.androwish.org/index.html/artifact/9c5639b44b21a292c879ff14ed99ab184332b4da
androwish:///assets/dmtx0.7.5/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/e3892410b86641a57a9f9238f726148d4e6ed415
androwish:///assets/zbar0.10/android_demo%252Etcl
http://www.androwish.org/index.html/artifact/4ce598aa1fc82dc9a41a04992a94673cb4d863af
androwish:///assets/sdl2tk8.6/demos/android_webcam%252Etcl
http://www.androwish.org/index.html/artifact/ade494d56814fc1ba5d72886ee3233f7bed44de0
androwish:///assets/tkbugz/vr_bugz%252Etcl
http://www.androwish.org/index.html/artifact/53b62ad7dac6c148902b40886c0c5ed7ac38d8af

jsmpeg SDL Video Driver

jsmpeg SDL Video Driver

An experimental SDL video driver named jsmpeg is provided since Valentine's Day 2019. It uses the technique
described in https://github.com/phoboslab/jsmpeg and https://github.com/phoboslab/jsmpeg-vnc in combination
with HTML5 and WebGL in a modern browser to provide display, mouse, and keyboard to a normal undroidwish.

This means, that the rendering is performed into a memory buffer, which is encoded into a modified MPEG-1 transport
stream, sent over a Websocket to a web browser, which performs MPEG-1 decoding and rendering into a HTML5
canvas optionally using WebGL. Likewise, mouse and keyboard events are sent on the same Websocket from the
browser back to the jsmpeg driver, transformed to SDL mouse and keyboard events and further processed by the
undroidwish application.

Frame rate and required bandwidth are moderate. Currently, 25 frames per seconds are sent at most, which require
some few hundred kilobits per second. Since April 2019 limited support for OpenGL is available for the Canvas3D and
tkZinc widgets. It requires a working EGL/OpenGL infrastructure (Linux etc.) or Windows OpenGL.

For the adventurous, there is a test version for Linux x86_64 (Debian 9, Fedora 29, maybe CentOS 7), Windows (XP
or newer, 32 bit), and MacOSX (tested on High Sierra). All can be run using the jsmpeg video driver when the
environment variable SDL_VIDEODRIVER has the value jsmpeg and the required FFMpeg DLLs/shared libraries are
available on the system, e.g.

 # POSIX
 SDL_VIDEODRIVER=jsmpeg ./undroidwish-x86_64-deb9 builtin:widget -sdlwidth 800 -sdlheight 600

 REM Windows
 SET SDL_VIDEODRIVER=jsmpeg
 undroidwish-win32.exe builtin:widget -sdlwidth 800 -sdlheight 600

For Windows, the required DLLs are avutil-56.dll, avcodec-58.dll, swresample-3.dll, and swscale-5.dll which are
available from https://www.ffmpeg.org/download.html and preferably loaded from
%PROGRAMFILES%\ffmpeg\bin. For Linux, the shared libraries are available per installing the distribution's
ffmpeg package(s). For MacOSX, the homebrew ffmpeg package provides the necessary shared libraries.

By default, the HTTP/Websockets port is 8080 which can be overridden with the environment variable
SDL_VIDEO_JSMPEG_PORT. Thus, the URL

 http://localhost:8080

connects the browser with the jsmpeg enabled undroidwish. If the browser's WebGL implementation isn't suitable for
proper displaying the undroidwish root window, the alternate URL

 http://localhost:8080/?use2d

turns off WebGL usage.

https://github.com/phoboslab/jsmpeg
https://github.com/phoboslab/jsmpeg-vnc
http://www.ch-werner.de/AndroWish/undroidwish-x86_64-deb9
http://www.ch-werner.de/AndroWish/undroidwish-win32.exe
http://www.ch-werner.de/AndroWish/undroidwish.dmg
https://www.ffmpeg.org/download.html

Screenshot taken in a GNOME Wayland session

Limitations of AndroWish

Limitations of AndroWish

The X11 emulation is not thread-safe, thus it is impossible to do a package require Tk from another thread.
But multiple Tcl interps in the main thread work. Since "The Flintstones (2014-09-30)" release the X11
emulation is thread safe but many extensions are not, e.g. snack, expect etc. Your mileage may vary.
Due to Android process start up with respect to the window system the Tcl exec command cannot be used to
start other Tk processes.
The bandwidth of device screen resolutions is broad (100 dpi .. 500 dpi) compared to usual desktop systems.
But many elements of Tk widgets are pixel based. This is partly addressed by using icon bitmaps in various sizes
but far from being a perfect solution.

modbus

modbus command

Name

modbus - Tcl interface to libmodbus

Synopsis

package require Tcl 8.6
package require modbus
modbus::new cmd host service
modbus::new serial baud parity data stop ?slave_addr?
cmd destroy
cmd connect
cmd close
cmd setchan chan
cmd response_timeout ?ms?
cmd serial_mode ?mode?
cmd read_bits addr ?number?
cmd read_input_bits addr ?number?
cmd read_registers addr ?number?
cmd read_input_registers addr ?number?
cmd write_bit addr value
cmd write_register addr value
cmd write_bits addr value ...
cmd write_registers addr value ...
cmd set_slave slave_addr

Description

This package provides a Tcl interface to libmodbus (see http://libmodus.org) using Ffidl and TclOO.

Commands

modbus::new cmd host service

Creates a new command cmd which implements a Modbus-TCP connection object to the given host (IP
address or hostname) and service (symbolic or numeric TCP port). Further operations on that object are
carried out by invoking methods on cmd.

modbus::new serial baud parity data stop ?slave_addr?

Creates a new command cmd which implements a Modbus-RTU connection object on the serial line serial
with parameters baud rate, parity (N=none, O=odd, E=even), data bits, and stop bits. The optional
parameter slave_addr specifies the Modbus-RTU slave address and defaults to zero. Further operations on
that object are carried out by invoking methods on cmd.

cmd destroy

Destroys the connection object cmd, releases resources and closes communications links.

cmd connect

Connects the connection object cmd to its peer (a TCP server for Modbus-TCP or a serial line for Modbus-
RTU).

cmd close

Closes the connection (either the socket or the serial line) of the connection object cmd.

cmd setchan chan

On POSIX platforms, this method duplicates the operating system handle of the Tcl channel chan and
wraps it into the cmd connection object. The Tcl channel can be closed immediately after this operation.
Depending on the constructor, the operating system handle must provide socket or tty semantics for
further I/O methods on cmd to succeed. On Windows platforms, this method is not supported.

cmd response_time ?ms?

Queries or sets the response timeout on the connection object cmd. The timeout is specified in
milliseconds.

cmd serial_mode ?mode?

http://libmodbus.org

Queries or sets RS-232 or RS-485 mode on the Modbus-RTU connection object cmd. For RS-232 mode
must be 0, for RS-485 it must be 1.

cmd read_bits addr ?number?

Reads number coil status bits starting with address addr from the connection object cmd. Number defaults
to one.

cmd read_input_bits addr ?number?

Reads number input status bits starting with address addr from the connection object cmd. Number
defaults to one.

cmd read_registers addr ?number?

Reads number holding registers starting with address addr from the connection object cmd. Number
defaults to one.

cmd read_input_registers addr ?number?

Reads number input registers starting with address addr from the connection object cmd. Number defaults
to one.

cmd write_bit addr value

Writes value into the coil status bit with address addr on the connection object cmd.

cmd write_register addr value

Writes value into the holding register with address addr on the connection object cmd.

cmd write_bits addr value ...

Writes one ore more values into the coil status bits starting with address addr on the connection object
cmd.

cmd write_registers addr value ...

Writes one ore more values into the holding registers starting with address addr on the connection object
cmd.

cmd set_slave ?slave_addr?

Sets the slave address for Modbus-RTU on the connection object cmd to slave_addr.

Muzic MIDI sound package

muzic command

Name

muzic - a MIDI sound package compatible with Muzic.

Synopsis

package require Muzic
muzic::subcommand ...

Description

muzic is a Tcl music interface to the Sonivox MIDI rendering (software synthesis) library on Android. The original
package was developed by Steve Landers and is Copyright (c) 2005 Eolas Technologies Inc. It is released under a
Tcl/BSD style license.

To use Muzic, no special provisions are needed, since it is fully integrated in AndroWish.

The Muzic API contains just five procedures:

muzic::init

Must be called once to initialize audio playback.

muzic::soundfont file

This command exists for compatibility with the original package. It can be called with no arguments or with
builtin. Everything else throws an error since the Android software synthesizer has no support for
SoundFont files.

muzic::channel channel instrument

Assigns an instrument to a channel. channel is an integer from 0 to 15 identifying the MIDI channel.
instrument is the instrument number, typically a MIDI instrument number from 0 to 127.

muzic::playnote channel pitch volume ?duration?

Plays a note on specified channel, at specified pitch and volume. The pitch is the raw MIDI pitch, as per the
general midi standard - where middle C is 60 (see
http://www.mozart.co.uk/information/articles/midinote.htm which has a table of MIDI pitch values). volume
is a number between 0 and 100. duration is optional, and defaults to 500 (i.e. 500 ms). If a negative
duration is given, the note is played continuously. If a volume of zero is given, playback of the note ends.

muzic::close

To be called when MIDI audio playback shall be stopped in order to conserve battery power.

http://wiki.tcl.tk/14652
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.mozart.co.uk/information/articles/midinote.htm

Releases

List of AndroWish Releases

Fossil Tag Date Remarks

Eppur si muove 2019-06-
22

The first release of AndroWish in 2019 featuring Tcl/Tk 8.6.9, SQLite
3.28.0, SDL 2.0.6 with patches, and many other updated packages.
Some new extensions are included: tkvlc, topcua, tclJBlend, and tcl-
fuse. A webview for the major desktop platforms is contained as a
preview. A new SDL video driver called "jsmpeg" is included in the
undroidwish builds.

Asteroid Day 2018-06-
30

Another low-impact release of AndroWish featuring Tcl/Tk 8.6.8,
SQLite 3.24.0, SDL 2.0.6 with patches, and many other updated
packages. Some new extensions are included: tclcan, modbus, snap7,
and fswatch. Build support for multiple platforms is more stable. The
Wayland variant now runs on CentOS 7.5, too, plus a frame buffer
rendering mode based on Linux kernel mode setting with direct
render mode is included.

The Leyden Jar 2017-10-
11

The long overdue release of AndroWish in 2017 featuring Tcl/Tk
8.6.7, SQLite 3.20.1, SDL 2.0.5, Tkzinc 3.3.6 and many other
updated packages. Other highlights are: basic NFC support in
AndroWish, stereoscopic render modes both in the SDL based Tk and
in the 3D canvas widget, build support for more platforms in
undroidwish, e.g. FreeBSD, OpenIndiana, MacOSX, Haiku, plus
support for Wayland.

Bonfire Night 2016-11-
05

This is the 3rd anniversary edition of AndroWish featuring Tcl/Tk
8.6.6, SQLite 3.15.1, and tksvg. Many other packages are updated to
newer versions, too. The undroidwish based builds now contain the
same subset of BLT (barchart, graph widgets) as AndroWish. All
builds contain a proposed TIP#302 implementation to be indifferent
with respect to wall clock changes by making computation of
durations based on a monotonic clock source if supported by the OS.

The Wow! Signal 2016-08-
15

This is an update release featuring Tcl/Tk 8.6.6, SQLite 3.14.1, and
LibreSSL 2.2.9. Many other packages are updated to newer versions,
too. The undroidwish based builds now contain TWAPI/WiTS
(Windows versions) and broader support for video capture (both,
Windows and Linux).

El Caballero de la Triste
Figura

2016-04-
23

This an update release featuring Tcl/Tk 8.6.5 and SQLite 3.12.2.
Some other packages are updated to newer versions, too (SDL 2.0.4
plus patches, tcllib, pdf4tcl). OpenSSL is replaced by LibreSSL 2.2.6
and TkHTML 3 is added. This release introduces undroidwish plus an
AndroWish SDK based on undroidwish binaries.

Caractacus Potts 2015-12-
18

This is mainly a bug fix and update release. Some packages are
updated to newer versions (SQLite 3.9.2, gridplus 2.11, icons 2.0,
libpng 1.2.54), the "ble" command and underlying infrastructure is
more stable, the "borg" command is improved and allows now to turn
Bluetooth on and off and to send SMS. The tkpath widget combined
with pdf4tcl now can generate PDF documents from most supported
item types including alpha blending and color gradients. The
AndroWish SDK is improved and now able to run on all supported
Tcl/Tk desktop platforms.

Back to the Future 2015-10-
21

This release adds full Unicode 8.0 support including Emojis by using
32 bits for the internal representation of Unicode codepoints and up
to 4 byte long UTF-8 sequences (potentially incompatible with Tcl
versions on other platforms). An initial AndroWish SDK is provided
which simplifies packaging of user defined trimmed down APKs
(Android packages). The tclepeg package has been added to make
JPEG files into thumbnails. Some other packages are updated to
newer versions: SQLite 3.9.1, BWidget 1.9.9, and RAL 0.11.7.

http://www.androwish.org/index.html/timeline?t=Eppur+si+muove
http://www.androwish.org/index.html/timeline?t=Asteroid+Day
http://www.androwish.org/index.html/timeline?t=The+Leyden+Jar
http://www.androwish.org/index.html/timeline?t=Bonfire+Night
http://www.androwish.org/index.html/timeline?t=The+Wow!+Signal
http://www.androwish.org/index.html/timeline?t=El+Caballero+de+la+Triste+Figura
http://www.androwish.org/index.html/timeline?t=Caractacus+Potts
http://www.androwish.org/index.html/timeline?t=Back+to+the+Future

Something wicked this way
comes

2015-08-
22

This release adds various new "borg" minor commands, e.g. to read
images from the device camera(s) into Tk photo images, VecTcl 0.2,
and interfaces to the ZBar and libdmtx barcode scanners. SQLite is
updated to version 3.8.11.1. Subpackages were updated to newer
upstream versions, and many bugs were fixed.

The Blues Brothers 2015-06-
16

This release adds a Muzic compatible MIDI sound package to
AndroWish. SQLite is updated to version 3.8.10.2. The tkpath widget
and Bluetooth Low Energy module have been improved. Bugs in the
Xlib emulation have been fixed. The "borg" command supports the
new minor commands "trace" and "brightness".

Don Quixote 2015-04-
23

This release adds support for Bluetooth Low Energy (aka Bluetooth
Smart or Bluetooth 4.0) and the tkpath widget to AndroWish. SQLite
is updated to version 3.8.9. Many bugs in the Xlib emulation and in
the ZIP virtual filesystem have been fixed. TrueType font rendering
speed for Tk widgets is improved. The "borg" command supports the
new minor commands "broadcast", "providerinfo", and "queryconsts".

Pi Day 2015-03-
14

This is mainly a bug fix and update release. Many little annoying
problems in the Xlib emulation and in AndroWish startup were fixed:
transient window handling, mouse/touch coordinate translation,
loading of supplemental Java classes for Bluetooth and USB, etc.
Many packages are updated to newer versions: Tcl/Tk 8.6.4, SQLite
3.8.8.3, tls 1.6.4, TclWS 2.3.8, itcl 4.0.3, itk 4.0.1, OpenSSL 1.0.1l,
curl 7.41.0, tdbc* 1.0.3, and thread 2.7.2. The "borg" command has
some new minor commands "systemproperties" and "phoneinfo" plus
phone related virtual events.

Groundhog Day 2015-02-
02

This release adds expect 5.45.2 and support for joysticks/game
controllers to AndroWish. Many packages are updated: SQLite 3.8.8.2
including the ICU extension, nsf 2.0.0, tkimg 1.4.3, tls 1.6.4, trofs
0.4.8, and tklib to its latest upstream version. Some bugs in the X11
emulation are fixed: listbox selection, font metrics, dashed lines,
various crashes. The built in ZIP file system is improved and fixes long
standing issues with glob -directory.

Peter Pan 2014-12-
29

This is mainly a bug fix release which improves stability of the 3d
canvas widget, fixes "wm attributes -fullscreen" and on-screen
keyboard handling, and adds proper support of the "sdltk
screensaver" command. SQLite is updated to version 3.8.7.4, and the
mentry and tablelist packages to their latest upstream versions. A
separately packaged TkChat for Android is available which needs an
installed AndroWish on the device.

All things are full of fools 2014-12-
07

Stultorum plena sunt omnia (Marcus Tullius Cicero). Tcl and Tk are
updated to version 8.6.3, SQLite to version 3.8.7.3. The brand new
feature: DRH's 3d canvas widget now runs on Android! It uses an
OpenGL to OpenGLES 1.1 emulation layer and renders to an off-
screen texture which later is copied into the framebuffer and
displayed by SDL which on most modern tablets/smartphones uses
OpenGLES 2 for this task. YMMV in terms of stability of the 3d canvas
depending on the quality of the device vendor's OpenGLES
implementation.

The Gunpowder Plot 2014-11-
05

Remember, remember AndroWish's first anniversary. The root
window now can be zoomed and panned with two and three fingers,
respectively. SQLite is updated to 3.8.7.1 and threading support is
more stable.

The Flintstones 2014-09-
30

Yabba dabba doo! The most prominent new feature is threading
support in the X11 emulation layer allowing "package require Tk" from
a Tcl thread. The tclral package is updated to version 0.11.2.

The Great Moon Hoax 2014-09-
16

Lunar features: Tcl/Tk updated to version 8.6.2. Packages tclxml,
snack, tclws, tclsoap, and vu widgets added. New virtual events and
commands to deal with GPS/NMEA and tethering information.
Drawing/rendering now performed in RGB888 instead of RGB565.

http://www.androwish.org/index.html/timeline?t=Something+wicked+this+way+comes
http://www.androwish.org/index.html/timeline?t=The+Blues+Brothers
http://www.androwish.org/index.html/timeline?t=Don+Quixote
http://www.androwish.org/index.html/timeline?t=Pi+Day
http://www.androwish.org/index.html/timeline?t=Groundhog+Day
http://www.androwish.org/index.html/timeline?t=Peter+Pan
http://www.androwish.org/index.html/timeline?t=All+things+are+full+of+fools
http://www.androwish.org/index.html/timeline?t=The+Gunpowder+Plot
http://www.androwish.org/index.html/timeline?t=The+Flintstones
http://www.androwish.org/index.html/timeline?t=The+Great+Moon+Hoax

The Wizard of Oz 2014-08-
17

Behind the curtain: SQLite updated to 3.8.6, OpenSSL updated to
1.0.1h, many icons now take the screen's pixel density into account,
accelerometer and magnetic field sensors now report proper
orientation data.

Alice In Wonderland 2014-07-
28

Initial fossil import. Follow the white rabbit.

http://www.androwish.org/index.html/timeline?t=The+Wizard+of+Oz
http://www.androwish.org/index.html/timeline?t=Alice+In+Wonderland

rfcomm command

rfcomm command

Name

rfcomm - transfer data over Bluetooth serial port profile; akin to the Tcl socket command.

Synopsis

package require Rfcomm
rfcomm ?-myaddr addr? ?-myport myport? ?-async? host port
rfcomm -server command ?-myaddr addr? port

Description

This command is used to obtain a channel which is able to transfer data over Bluetooth's serial port profile (SPP or
SP). The arguments are nearly identical to the Tcl socket command. It returns a client or server channel handle. Client
channels may be used with gets, read, puts, fconfigure, and close. Server channels return a new client channel in
the command callback when a incoming connection was established.

For client channels (first command form), the host parameter must be given as a one- or two-element list: the first
element is the Bluetooth address of the remote device, and the (optional) second element is the UUID of the remote
service. If omitted the standard Bluetooth UUID for the Serial Port Profile 00001101-0000-1000-8000-00805F9B34FB is
used. The non-blocking connection mode (-async specified) uses readability of the channel to indicate connection
state. This is different to normal socket channels, where writability provides this information.

For server channels, the first element is the UUID for the local SDP (Service Discovery Protocol) record, i.e. the
application identifier, and the optional second element is the friendly name of the service as advertised over SDP. On
some Android versions the friendly name may not be an empty string, otherwise incoming connection requests are not
fulfilled. The port parameter is usually ignored and should be specified as 0.

sdltk command

sdltk command

Name

sdltk - exposure of the SDL2 (Simple DirectMedia Layer) API.

Synopsis

sdltk option ?arg ...?

Description

This command is used to control portions of the Android (or Windows or Linux) system that the SDL2 framework
exposes. Actual data processing for this framework is achieved by having handlers for virtual events.

sdltk powerinfo

Returns a list of key-value pairs describing the state of the battery. The keys are state, seconds, and
percent. The possible values for the state are onbattery, nobattery, charging, charged, and unknown. The
other items are reported as integer numbers.

sdltk accelerometer on|off

Turns event reporting of the device's accelerometer on or off. Creates top-level virtual events
<<Accelerometer>> when turned on. This command is not usable on Windows and Linux.

sdltk accelbuffer axis

Returns the accelerometer values for axis (1..3) which have been read during the last second as a list of
integer values in the range -32768 .. 32767. The time resolution is identical with the framerate (20 ms).
The values can be read out anytime independent of the accelerometer event enable state. The buffer is
filled based on occurrences of the <<Accelerometer>> virtual event, missed values with respect to the
framerate are interpolated. This command is not usable on Windows and Linux.

sdltk textinput ?on|off ?x y ?hint???

Returns the state of the virtual keyboard or switches the virtual keyboard on or off. The optional
coordinate pair is a hint for the system where the insertion cursor is displayed in screen coordinates. This
allows the system to adjust the application's screen in order to display the insertion cursor when the
virtual keyboard is active. The entry, ttk::entry, text, and spinbox widgets have standard bindings which
activate text input on left mouse button press (or equivalent touch event) if the widget's state is not
disabled. Activation of text input for these widgets can be turned off entirely by providing a dummy
bindtag named SdlTkNoTextInput. Android specific: the hint parameter is an integer which controls the
kind of virtual keyboard to be displayed. Known values are 0 (normal keyboard), 2 (number input), 3
(phone number input), 4 (date/time input).

sdltk android

Returns true when running on Android, false otherwise, i.e. when built for Windows or Linux platforms.

sdltk framebuffer

Returns true when the video driver resembles a framebuffer, i.e. no windowing manager is available.
Currently this is the case for Android, the Raspberry Pi video driver (RPI), the Linux KMSDRM video driver,
and the jsmpeg video driver.

sdltk isandroidtv

Returns true when running on an AndroidTV device (currently untested).

sdltk ischromebook

Returns true when running on a Chromebook (currently untested).

sdltk maxroot

Returns the maximum size of the root window as two element list made up of width and height in pixels.
The maximum size is device dependent and determined by the maximum texture size of the underlying
OpenGL/OpenGLES drivers.

sdltk root ?width height?

When invoked without width and height parameters the command returns the current size of the root
window as two element list of integers. When width and height are given, the root window is resized to

the size given. When both width and height are given as zero, the root window is resized to the device
screen size.

sdltk vsync

Waits until the next screen refresh and returns the number of screen refreshes which happened during
that wait. The maximum wait time is limited to 20 milliseconds (the internal tick rate for screen updates)
but can be longer due to system load.

sdltk viewport ?x y ?width height??

Changes the viewport (root window to device screen) to allow zooming and panning of the root window.
When invoked without parameters, the current viewport settings are returned as a four element list of
integers. When the x and y parameters are given, the viewport is shifted that x and y are shown in the
top-left corner of the screen. When all four parameters are given, the viewport is adjusted accordingly, i.e.
width and height determine the zoom factor, and x and y the top-left corner of the view. Note however,
that the aspect ratio is retained, i.e. the given parameters are adjusted to keep the aspect.

sdltk touchtranslate ?mask?

Controls touchscreen event translation, or reports the current translation state. mask is a bit mask
controlling various translations. Bit 0 (mask 1) turns on translation of middle/right mouse buttons, i.e. fast
wipes with one finger are translated to mouse button 2 press/motion/release events to allow scrolling of
listboxes, entries, and text widgets. Slow wipes still deliver mouse button 1 motion events. Holding down
one finger for about a second is translated into mouse button 3 press for context menus. Bit 1 (mask 2)
turns on pinch-to-zoom with two fingers which is reported as a virtual event named <<PinchToZoom>>. Bit
2 (mask 4) turns on pinch-to-zoom and wipes for zooming and panning the root window. When both, bits
1 and 2 are on (mask equals 6), zooming the root window requires three instead of two fingers and
panning four instead of three fingers. Bit 3 (mask 8) turns on translation of finger events to the current
viewport settings, i.e. the <<FingerUp>>, <<FingerDown>>, and <<FingerMotion>> events are translated to
the current viewable portion of the root window instead of the device screen. Bit 4 (mask 16) turns on
reporting of finger down/up events for up to 10 fingers as <ButtonPress> and <ButtonRelease> events
with button numbers 10 to 19. However, no provisions are taken to ensure proper implicit button grabs
like a real X server would do, thus use this feature with caution. The default touchscreen translation mode
on startup is mask 13 (bits 0, 2, and 3 are on), i.e. everything except <<PinchToZoom>> and finger
down/up as <ButtonPress>/<ButtonRelease> is enabled. On Windows and Linux platforms only bit 3 (mask
8) to control the viewport is supported.

sdltk screensaver ?on|off?

Turns the screen saver on or off or reports the current state of the screensaver.

sdltk joystick ids

Returns a list made up joystick ids (in SDL2 referred to as joystick instance identifiers) which are reported
in related virtual events. These ids are integer numbers which increase for each new detected joystick.

sdltk joystick name id

Returns the name of the joystick identified by id.

sdltk joystick guid id

Returns the globally unique id (GUID, 128 bit string) of the joystick identified by id.

sdltk joystick numaxes id

Returns the number of axes of the joystick identified by id.

sdltk joystick numballs id

Returns the number of balls of the joystick identified by id.

sdltk joystick numbuttons id

Returns the number of buttons of the joystick identified by id.

sdltk joystick numhats id

Returns the number of hats of the joystick identified by id.

sdltk addfont filename

Adds TrueType font(s) contained in filename and returns the font family names which were added. If the
font already has been loaded an error is thrown.

sdltk hasgl

Returns true when OpenGL support is available, e.g. for the 3D canvas widget.

sdltk log priority message

Outputs the log message message using SDL's logging facility. priority specifies the priority of the log
message and must be one of verbose, debug, info, warn, error, or fatal (from lowest to highest).

sdltk deiconify

Deiconifies the SDL root window (not usable on Android and Wayland).

sdltk fullscreen

Makes the SDL root window into a fullscreen window (not usable on Android and Wayland). The SDL root
window must be resizable (command line option -sdlresizable).

sdltk iconify

Iconifies (minimizes) the SDL root window (not usable on Android and Wayland).

sdltk maximize

Maximizes the SDL root window (not usable on Android and Wayland). The SDL root window must be
resizable (command line option -sdlresizable).

sdltk restore

Restores the last unmaximized geometry of the SDL root window (not usable on Android and Wayland).

sdltk withdraw

Withdraw (hides entirely) the SDL root window (not usable on Android and Wayland).

sdltk opacity value

Query or set the opacity of the SDL root window. value must be a floating point number between 0.0 and
1.0 (not usable on Android). On POSIX operating systems the window manager must support transparent
toplevels for this setting having an effect.

sdltk fonts

Returns a list made up of font information in the form of three elements XLFD, file name, font index of all
registered fonts.

sdltk vrmode ?mode ?distortion rescale??

Experimental VR headset mode currently only supported on the Android platform. If mode is specified, it
changes the VR headset mode to one of the following: Mode 0 for normal operation, in mode 1 the root
window is duplicated along its horizontal axis and scaled up or down, in mode 2 the root window must be
managed as left and right halves by the application, and in mode 3 the root window is duplicated along its
horizontal axis without scaling. For all modes except mode 0 touch screen panning and zooming on
Android is turned off and touch coordinates in X are reported equal for both left and right halves of the
screen. All modes except mode 0 turn on a shader performing a barrel distortion (when OpenGL ES 2 is
available) which theoretically compensates the lenses of a VR headset. The optional parameters distortion
and rescale, if present, must be specified as floating point numbers and control the degree of distortion.
If mode and additional arguments are omitted, the currently active mode including the distortion control
parameters are returned as a Tcl list of three elements.

sdltk pointer ?flag?

Queries or sets the state of the mouse pointer shape. If present, flag must be a boolean value and
specifies the new state. If not present, the current state is returned as 0 (off) or 1 (on).

sdltk touchcalibration ?xmin xmax ymin ymax swapxy?

Queries or sets the calibration data for resistive touchscreens supported on certain SDL video drivers
(currently Linux EVDEV devices with KMSDRM or RPI video drivers). The calibration data consists of five
integer numbers which are returned as a list, when the command is called without parameters.

sdltk size ?width height?

Queries the size of the enclosing SDL root window when width and height parameters are omitted. A two
element list is returned with the current width and height in pixels. If parameters are given, the enclosing
SDL root window is resized respectively, provided that the command line parameter -sdlresizeable was
specified and the command line parameter -sdlfullscreen was not specified on startup. However,
changing the SDL root window size is not supported on framebuffer like devices (see sdltk framebuffer).

Touchscreen and Accelerometer Events

Using the sdltk framework usually requires liberal use of virtual event handlers. The virtual events include:

<<Accelerometer>>

Event associated with the accelerometer (activated with sdltk accelerometer on). %s is substituted with
the accelerometer axis {1..3} and %x with the accelerometer value in the range {-32768...+32767}. This

event is reported to toplevel widgets only.

<<FingerDown>>

A touch event.

<<FingerUp>>

A touch completion event.

<<FingerMotion>>

A touch movement (sliding) event. The fields %x and %y are substituted with the finger position scaled to
{0...9999} of the device screen or viewport, %X and %Y with the motion difference scaled to {-
9999...+9999}, %t with the pressure scaled to {0...9999}, and %s with the finger identifier {1...10}. These
substitutions are performed for all finger related touch events.

<<PinchToZoom>>

A zoom gesture event. %X and %Y are substituted with the root window coordinate of the center of the two
fingers, %x with the distance between the two fingers, and %y with the angle measured in 64 times degrees
CCW starting at 3 o'clock. The finger state is reported in the %s substitution as 0 (zoom motion), 1 (zoom
start, i.e. 2nd finger down event), 2 (zoom end by 1st finger up event), 3 (zoom end by 2nd finger up
event).

Joystick Events

Following virtual events are reported for joysticks and game controllers:

<<JoystickAdded>>, <<JoystickRemoved>>

Event generated when a joystick or game controller is plugged or unplugged. The field %X is substituted
with the joystick id (instance identifier in SDL2 terminology).

<<JoystickMotion>>

Similar to <<Accelerometer>> this event is reported when the position of the joystick has changed. An
additional substitution is made for %X which receives the joystick id (instance identifier in SDL2
terminology).

<<TrackballMotion>>

A joystick trackball has moved. The fields %x and %y are substituted with the deltas of the move, %s with
the trackball number counted from 1, the field %X indicates the joystick id.

<<HatPosition>>

A joystick hat has changed. The field %x is substituted with the value of the hat, %s with the hat number
counted from 1, the field %X indicates the joystick id.

<<JoystickButtonUp>>, <<JoystickButtonDown>>

A joystick button was pressed or released. The field %s is substituted with the button number counted
from 1, the field %X indicates the joystick id.

Events related to the device screen

<<ViewportUpdate>>

This event is sent to toplevel widgets when the viewport has changed. %x and %y are substituted with the
viewport offset (top-left corner of the screen), %X and %Y with the width and height, respectively, and %s
with the scale factor (relation of root window size to displayed size) scaled to 10000.

Events related to the app life-cycle

These events are direct translations from SDL events (SDL_APP_* in SDL header files) and depend on platform
support. They are reported to toplevel widgets only.

<<LowMemory>>

System is in low memory situation. Although implemented for Android and iOS, this event was never
observed in reality.

<<Terminating>>

App is terminating. Although implemented for Android and iOS, this event was never observed in reality,
maybe due to timing regarding threads.

<<WillEnterBackground>>

App's screen will be put in background.

<<DidEnterBackground>>

App's screen is in the background.

<<WillEnterForeground>>

App's screen will be put in foreground. On Android, not reported on startup of the app.

<<DidEnterForeground>>

App's screen is in the foreground. On Android, not reported on startup of the app.

Note that on Android the system may kill an app at any time due to low memory situations. In order to keep some
app state persistent, the best option is to record each change immediately. Another option is using the
<<WillEnterBackground>> virtual event since it may be received before unexpected app termination.

Accelerometer Example

 proc showaccel {canvas axis value} {
 set ix 0
 set iy 0
 if {$axis == 1} {
 set ix [expr {$value / 256}]
 } elseif {$axis == 2} {
 set iy [expr {$value / 256}]
 } elseif {$axis == 3} {
 set ::pos(t) [expr {($value / 256) % 360}]
 } else {
 return
 }
 if {![info exists ::pos(x)]} {
 set ::pos(x) [expr [winfo width $canvas] / 4]
 set ::pos(y) [expr [winfo height $canvas] / 4]
 set ::pos(t) 0
 }
 set ::pos(x) [expr {$::pos(x) + $ix}]
 set ::pos(y) [expr {$::pos(y) + $iy}]
 if {$::pos(x) < 50} {
 set ::pos(x) 50
 } elseif {$::pos(x) > [winfo width $canvas] - 50} {
 set ::pos(x) [expr {[winfo width $canvas] - 50}]
 }
 if {$::pos(y) < 50} {
 set ::pos(y) 50
 } elseif {$::pos(y) > [winfo height $canvas] - 50} {
 set ::pos(y) [expr {[winfo height $canvas] - 50}]
 }
 if {$axis == 3} {
 $canvas delete a
 set x0 [expr {$::pos(x) - 48}]
 set x1 [expr {$x0 + 96}]
 set y0 [expr {$::pos(y) - 48}]
 set y1 [expr {$y0 + 96}]
 $canvas create arc $x0 $y0 $x1 $y1 -fill yellow -outline red \
 -width 6 -start [expr {330 - $::pos(t)}] -extent -300.0 -tags a
 }
 }

 wm attributes . -fullscreen 1
 canvas .c -bg black -bd 0 -highlightthickness 0
 pack .c -side top -fill both -expand 1 -padx 0 -pady 0
 set f [open [info script]]
 .c create text 20 120 -anchor nw -tag s -font {Courier 5} -text [read $f] \
 -fill gray50
 close $f
 button .c.x -text Exit -command {exit 0}
 .c create window 30 60 -anchor nw -tag x -window .c.x
 bind . <<Accelerometer>> {showaccel .c %s %x}
 sdltk accelerometer on

Pinch-to-zoom Example

 proc showzoom {canvas rootx rooty dist angle state} {
 $canvas itemconf t -text "XY: $rootx,$rooty L: $dist P: $angle S: $state"
 $canvas delete a
 # state 0 -> zoom motion
 # state 1 -> zoom start
 # state 2 -> zoom end, 1st finger up
 # state 3 -> zoom end, 2nd finger up
 if {$state < 2} {
 set phi [expr {$angle / 64.0}]
 set x0 [expr {$rootx - [winfo rootx $canvas] - $dist / 2}]
 set x1 [expr {$x0 + $dist}]
 set y0 [expr {$rooty - [winfo rooty $canvas] - $dist / 2}]

 set y1 [expr {$y0 + $dist}]
 $canvas create arc $x0 $y0 $x1 $y1 -fill yellow -outline red -width 6 \
 -start [expr {330 - $phi}] -extent -300.0 -tags a
 }
 }

 wm attributes . -fullscreen 1
 sdltk touchtranslate 15 ;# turn <<PinchToZoom>> on
 canvas .c -bg black -bd 0 -highlightthickness 0
 pack .c -side top -fill both -expand 1 -padx 0 -pady 0
 set f [open [info script]]
 .c create text 30 120 -anchor nw -tag s -font {Courier 6} -text [read $f] \
 -fill gray50
 close $f
 .c create text 30 30 -anchor w -fill green -tag t -font {Helvetica 16} \
 -text "Try pinch-to-zoom with two fingers"
 button .c.x -text Exit -command {exit 0}
 .c create window 30 60 -anchor nw -tag x -window .c.x
 bind .c <<PinchToZoom>> {showzoom %W %X %Y %x %y %s}

snap7

snap7 command

Name

snap7 - Tcl interface to the Snap7 library

Synopsis

package require Tcl 8.6
package require snap7
snap7::new cmd
cmd destroy
cmd connect addr port rack slot
cmd disconnect
cmd conntype type
cmd param ?name? ?value?
cmd isconnected
cmd pdulength
cmd dbread db start count
cmd dbreada db start count
cmd dbwrite db start data ...
cmd dbwritea db start bytes

Description

This package provides a Tcl interface to the Snap7 library (see http://snap7.sourceforge.net/) using Ffidl and TclOO.

Commands

snap7::new cmd

Creates a new command cmd which implements a Snap7 connection object. Further operations on that
object are carried out by invoking methods on cmd.

cmd destroy

Destroys the connection object cmd, releases resources and closes communications links.

cmd connect addr port rack slot

Connects the connection object cmd to its peer using the IP address addr, the TCP port number port and
further address information (rack and slot numbers).

cmd disconnect

Closes the connection of the connection object cmd.

cmd conntype type

Sets the connection type of the connection object cmd. Must be called before a connection is made using
the connect method. Valid values for type are 1 (PG), 2 (OP), and 3 (basic).

cmd param ?name? ?value?

If invoked without arguments, returns a list of parameter names which can be queried or set on the
connection object cmd. If name is provided, a query of this named parameter is performed. If both, name and
value are provided, the named parameter is set to the value given.

cmd isconnected

Returns true or false depending on connection state of the connection object cmd.

cmd pdulength

Returns a two element list made up of requested and negotiated PDU length of the connection object cmd.

cmd dbread db start count

Reads count bytes beginning at start from the data block db using the connection object cmd. Data is
returned as a list of integer numbers.

cmd dbreada db start count

Reads count bytes beginning at start from the data block db using the connection object cmd. Data is

http://snap7.sourceforge.net/

returned as a byte array.

cmd dbwrite db start data ...

Writes the numbers specified by data and following arguments as bytes beginning at start into the data
block db using the connection object cmd.

cmd dbwritea db start bytes

Writes the byte array bytes beginning at start into the data block db using the connection object cmd.

tclcan

can command

Name

can - Tcl interface to Linux SocketCAN

Synopsis

package require Tcl 8.6
package require tclcan
can bcmopen ifname
can bitrate ifname ?rate? ?sample_point?
can bittiming ifname
can bitttiming_const ifname
can berr ifname
can clock ifname
can close chan
can ctrlmode ifname ?mode ...?
can devstat ifname
can dump chan
can interfaces
can open ifname
can read chan
can restart ifname
can restart_ms ifname ?ms?
can start ifname
can state ifname
can stop ifname
can write chan canid data ?ifindex?
can write chan opcode flags count time1 time2 canid ?ifindex ...?

Description

This package provides Tcl support for Linux SocketCAN CAN_RAW and CAN_BCM socket types. The package
implements a new channel type and a Tcl command to perform operations on these channels. The standard gets,
puts, and read Tcl commands are not supported, but close, fconfigure, and fileevent are available as for normal
channels, e.g. sockets. When the libsocketcan shared library is available, various subcommands can be used to
manage CAN interfaces, too.

Commands

can bcmopen ifname

Opens a channel by creating a broadcast manager socket (type CAN_BCM) on the given CAN interface
ifname. If ifname is specified as an empty string, the channel is bound to all CAN interfaces. The command
returns an identifier for the channel which is to be used in subsequent can read and can write commands.

can bitrate ifname ?rate? ?sample_point?

Gets or sets the bitrate rate (and sets optional sample point to sample_point) on the CAN interface
ifname.

can bittiming ifname

Retrieves the current bit timing of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can bittiming_const ifname

Retrieves configuration on bit timing of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can berr ifname

Retrieves error counters of the CAN interface ifname. The result is a dictionary made up of the keys txerr
and rxerr with respective integer error counters.

can clock ifname

Retrieves the clock frequency of the CAN interface ifname. For details refer to
/usr/include/can_netlink.h.

can close chan

Closes the channel chan which was formerly obtained by can open. This is equivalent to invoking the close
command with chan as parameter.

can ctrlmode ifname ?mode ...?

Gets or sets modes on the CAN interface ifname. If no mode is specified, the current active modes are
returned as a list. Otherwise, mode must be one or more words of loopback, listenonly, 3_samples,
one_shot, berr_reporting, fd, and presume_ack. In order to turn a mode off, prefix the word with a minus
sign. Likewise, to turn it on, a plus sign may be optionally used as prefix.

can devstats ifname

Retrieves device statistics as a dictionary. For details refer to /usr/include/libsocketcan.h and
/usr/include/can_netlink.h.

can dump chan

Reads a CAN_RAW or CAN_BCM message off chan and returns a formatted representation of it as a list.
The list is empty if no CAN message was pending on chan.

Otherwise, for CAN_RAW channels the list has five or six elements which are: 1. an integer time stamp
equivalent to clock microseconds, 2. the interface index (see can interfaces), 3. the CAN identifier as a
hexadecimal string with 0x prefix, 4. a frame format tag of the CAN message as EFF (extended frame
format) or SFF (standard frame format) optionally followed by |RTR (remote transmission request) or |ERR
(error frame), 5. the data length as a decimal number, and optionally 6. the data portion of the CAN
message as hexadecimal dump without blanks and prefix.

For CAN_BCM channels the list is made up of: 1. an integer time stamp equivalent to clock
microseconds, 2. the interface index (see can interfaces), 3. the major CAN identifier as a hexadecimal
string with 0x prefix, 4. a frame format tag as described above, 5. the BCM opcode as one of TX_STATUS,
TX_EXPIRED, RX_STATUS, RX_TIMEOUT, or RX_CHANGED, 6. the BCM flags separated by vertical bars (SETTIMER,
STARTTIMER, TX_COUNTEVT, TX_ANNOUNCE, TX_CP_CAN_ID, RX_FILTER_ID, RX_CHECK_DLC, RX_NO_AUTOTIMER,
TX_RESET_MULTI_IDX, and RX_RTR_FRAME), 7. the BCM count field, 8. the first BCM interval field as floating
point number, 9. the second BCM interval field as floating point number, optionally 10. to 13. describing the
first CAN frame as CAN identifier (hexadecimal string), the frame format tag (EFF, SFF, etc.), the data
length, and the payload as hexadecimal dump. Fields 10. to 13. repeat for the respective number of CAN
frames contained in the BCM message.

can interfaces

Returns a list of CAN network interface names and indices suitable for can open, can read, can write and
link management subcommands.

can open ifname

Opens a channel (raw AF_CAN socket) on the given CAN interface ifname. If ifname is specified as an
empty string, the channel is bound to all CAN interfaces. The command returns an identifier for the channel
which is to be used in subsequent can read and can write commands.

can read chan

Reads a CAN_RAW or CAN_BCM message off chan as a list. The list is empty if no CAN message was
pending on chan.

Otherwise, for CAN_RAW channels it is made up of four elements, 1. the CAN identifier as an integer
number including flags as explained below, 2. the data portion of the CAN message as a byte array, 3. the
interface index of the CAN interface the CAN message was received from, and 4. a boolean value indicating
if more CAN messages can be read using can read.

For CAN_BCM channels it is made up of at least seven elements: 1. the interface index, 2. the major CAN
identifier (see above), 3. the BCM operation as one of TX_STATUS, TX_EXPIRED, RX_STATUS, RX_TIMEOUT, or
RX_CHANGED, 4. the BCM flags as an integer number, 5. the BCM count field as an integer number, 6. the first
BCM interval field as a floating point number, and 7. the second BCM interval field as a floating point number.
When CAN frames are part of the BCM message, each frame is a pair of CAN identifier as integer number
and the payload as byte array of length 0 to 8 for normal frames or an integer number for RTR frames.

can restart ifname

Performs a link restart on the CAN interface ifname.

can restart_ms ifname ?ms?

Gets or sets the restart timer of the CAN interface ifname. ms must be specified as positive integer number
of milliseconds.

can start ifname

Performs a link startup on the CAN interface ifname.

can state ifname

Retrieves the linmk state of the CAN interface ifname. The result is one of error_active, error_warning,
error_passive, bus_off, stopped, sleeping, or unknown.

can stop ifname

Performs a link stop on the CAN interface ifname.

can write chan canid data ?ifindex?

Writes a CAN_RAW message to chan. canid is the CAN identifier as integer number, data a byte array of
the data to be sent. The optional ifindex is the CAN interface index (see can interfaces) on which the
message is to be sent. It is mandatory to specify ifindex when chan is bound to all interfaces, i.e. the
interface name on can open was an empty string.

can write chan opcode flags count time1 time2 canid ?ifindex ...?

Writes a CAN_BCM message to chan. opcode must be a BCM operation out of the set TX_SETUP, TX_DELETE,
TX_READ, TX_SEND, RX_SETUP, RX_DELETE, and RX_READ. flags must be a list with zero or more elements of
the set SETTIMER, STARTTIMER, TX_COUNTEVT, TX_ANNOUNCE, TX_CP_CAN_ID, RX_FILTER_ID, RX_CHECK_DLC,
RX_NO_AUTOTIMER, RX_ANNOUNCE_RESUME, TX_RESET_MULTI_IDX, and RX_RTR_FRAME. count is the counter for
the first interval time1. The intervals time1 and time2 must be given as floating point numbers of seconds.
canid is the major CAN identifier for the BCM message. ifindex is the interface index which is required, if
the CAN_BCM channel was bound to all interfaces. All following optional arguments make up CAN frames
and must be pairs of a CAN identifier and a byte array of 0 up to 8 bytes for normal frames, or an integer
as data length for RTR frames.

CAN Identifiers

The Linux SocketCAN interface defines special bits in CAN identifiers which are made up of the three most significant
bits in a 32 bit integer: 0x80000000 for extended frame format (EFF), 0x40000000 for remote transmission request
(RTR), and 0x20000000 for error frames (ERR). The lower 29 (for EFF) or 11 (for SFF) bits make up the CAN identifier.
In order to retrieve the real CAN identifier of a received CAN message from can read a binary and with the masks
0x1FFFFFFF or 0x7FF must be carried out. In order to send an RTR message, the CAN identifier must be binary or-ed
with 0x40000000 for can write. In order to send a 29 bit CAN identifier it must be or-ed with 0x80000000.

Channel Options

The following list describes the additional channel options of CAN channels.

-error

The last system error message on the channel. This is a read-only option.

-filter ?list?

Message filters applied on reception. list must be made up of an even number of integers specifying CAN
identifiers and masks. The default is no filtering, expressed as two zero values. Up to 16 filters can be
specified. For details refer to /usr/include/linux/can.h.

-loopback ?bool?

Messages sent are looped back on the local system when enabled (on by default).

-ownmsgs ?bool?

Messages sent are received on the same channel when enabled (off by default).

Link Management

The link management subcommands bitrate, bittiming, bittiming_const, berr, clock, ctlrmode, devstat, restart,
restart_ms, start, state, and stop depend on an installed libsocketcan shared library for proper operation.
Otherwise they report "function not implemented". All changes of link state by these commands usually require
administrative rights. Either the calling process must have super user privileges or the CAP_NET_ADMIN capability
must be effective. The latter can be achieved by a command similar to:

 setcap cap_net_admin+eip binary-package-requiring-tclcan

Furthermore, retrieving link information depends on CAN driver support. Usually, the virtual CAN driver vcan and
drivers attached through a serial line discipline (using the slcan_attach or slcand programs) only provide rudimentary
link state information.

Broadcast Manager Examples

Open BCM channel:

 set chan [can bcmopen can0]

Schedule sending the pattern 0x41424344 on CAN identifier 0x123 once per second:

 can write $chan TX_SETUP \
 {SETTIMER STARTTIMER} \
 0 0.0 1.0 0x123 0x123 ABCD

Dispatch receiving CAN identifier 0x123 with update rate limited to two seconds:

 can write $chan RX_SETUP \
 {SETTIMER RX_FILTER_ID RX_ANNOUNCE_RESUME} \
 0 0.0 2.0 0x123

Dump all received BCM messages on standard output:

 proc dump chan {puts [can dump $chan]}
 fileevent $chan readable [list dump $chan]

Test and debug strategies on AndroWish

Test and debug strategies on AndroWish

For interactive testing, follow the directions given in tkconclient.

When scripts are not run interactively but started using e.g. an icon on the Android home screen, script errors may
show up in the Android system log buffer when not reported through the Tcl background error mechanism. In this
case, the Android Debug Bridge (adb) should be used on a development system. Refer to the description of the logcat
command-line tool and see an example output in the last image of the AndroWish SDK documentation.

Similarly, when explicit log output shall be written by application code, the borg log ... command or the sdltk log
... command can be used.

Output to the stderr and stdout channels in non-interactive scripts is normally not shown, but can be easily
displayed, too, when the console window is made viewable using console show.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/logcat

tkconclient

tkconclient

tkconclient is described in the Tcl Wiki as means for remote access to another Tcl interpreter using the tkcon console
in socket mode.

For an interactive AndroWish this can be achieved by adding these lines to ~/.wishrc (the Tcl script getting sourced
when an interactive wish or AndroWish is started)

 package require tkconclient
 tkconclient::start 12345

meaning that TCP port 12345 is accepting incoming connections from tkcon on all interfaces. If the Android device is
connected to the development system using an USB cable, it is possible to redirect port 12345 to that USB
connection:

 # on development system, instruct adb (Android Debug Bridge from SDK)
 # to forward TCP port 12345
 adb forward tcp:12345 tcp:12345

Then tkcon can connect in socket mode to localhost:12345. Alternatively, the netcat tool nc can be used but no input
prompts are shown:

 # netcat on development system, either called "netcat" or "nc"
 nc localhost 12345

Alternatively, the socat tool can be used similar to netcat:

 # socat on development system
 socat TCP:localhost:12345 STDIO

Even ye good olde telnet should do:

 # telnet on development system
 telnet localhost 12345

Similarly, the comm package from tcllib can be used in ~/.wishrc as

 package require comm
 comm::comm new comm::comm -port 12347 -local 1 -listen 1 -silent 1

where the TCP port used is 12347 on the local interface. The adb redirection in this case is:

 adb forward tcp:12347 tcp:12347

My own ~/.wishrc is somewhat larger:

 # Start socket for tkcon
 #
 # When used over ADB USB debug connection
 # the TCP port 12345 must be forwarded using
 #
 # adb forward tcp:12345 tcp:12345

 catch {
 package require tkconclient
 tkconclient::start 12345
 }

 # Start socket for comm
 #
 # When used over ADB USB debug connection
 # the TCP port 12347 must be forwarded using
 #
 # adb forward tcp:12347 tcp:12347

 catch {
 package require comm
 comm::comm new comm::comm -port 12347 -local 1 -listen 1 -silent 1
 }

 # Start dropbear SSH/SFTP daemon using librun.so
 # which is on the path of executable programs and
 # located in the directory where all AndroWish
 # shared libraries are installed.

http://wiki.tcl.tk/14701
http://wiki.tcl.tk/1878
http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/wiki?name=AndroWish

 #
 # When used over ADB USB debug connection
 # the TCP port 12346 must be forwarded using
 #
 # adb forward tcp:12346 tcp:12346
 #
 # The public key of the development system
 # must have been copied to $env(HOME)/.ssh/authorized_keys
 # of the Android device. $env(HOME) is usually /data/data/tk.tcl.wish/files
 #
 # This allows to SSH into the device as the AndroWish user
 # or to SFTP to/from the device as the AndroWish user.
 # That poor AndroWish user is the uid under which the Android
 # package manager decided to install the AndroWish APK.

 catch {
 exec librun.so libdropbear.so dropbear_main -R -p 12346
 }

 # Other goodies accessible through librun.so
 #
 # tclsh: librun.so libtcl.so tclsh ...
 # sqlite3: librun.so libtclsqlite3.so sqlite3_shell ...
 # ssh: librun.so libdropbear.so cli_main ...
 # scp: librun.so libdropbear.so scp_main ...
 # dropbearkey: librun.so libdropbear.so dropbearkey_main ...
 # curl: librun.so libcurl.so curl_main ...

topcua

opcua command

Name

opcua - Tcl binding to the OPC/UA implementation of http://www.open62541.org

Synopsis

package require topcua
opcua cmd ?arg?

Description

This command provides several operations to manage and communicate using the OPC/UA implementation of
http://www.open62541.org. It is available on common POSIX and Windows platforms. cmd indicates which
operation to carry out. Any unique abbreviation for cmd is acceptable. The valid commands are:

opcua add handle DataType nodeid parent reftype brname ?attrs?

Adds an new node of node class DataType in the server object handle and returns the node identifer. The
parameter nodeid is the requested new node identifier of the node to be created. parent is the parent
node identifier and reftype the reference type or node identifier of the reference between the parent and
the new node. brname is the browse name (see section Qualified Names) of the new node. The optional
attrs parameter specifies attributes for the new node in form of a dictionary (see opcua attr default). If
it is omitted, default values are used. The DisplayName attribute if left empty is preset to the name part of
the browse name parameter.

opcua add handle Method nodeid parent reftype outargs brname inargs cmd ?attrs?

Adds an new node of node class Method in the server object handle and returns the node identifer. The
parameter outargs describes the output arguments of the method as a list of zero or more pairs of data
type and argument name. Likewise, inargs describes the input arguments of the method. The parameter
cmd is the Tcl callback to handle the method invocation, see section Method Callbacks for more
information. For the other parameters, refer to opcua add DataType.

opcua add handle Namespace name

Adds the new namespace name to the server object handle and returns a numeric identifier for this
namespace.

opcua add handle Object nodeid parent reftype brname ?typeid attrs?

Adds an new node of node class Object in the server object handle and returns the node identifer. The
optional parameter typeid must be a known data type name (see opcua types) or a node identifier of a
data type. For the other parameters, refer to opcua add DataType.

opcua add handle ObjectType nodeid parent reftype brname ?attrs?

Adds an new node of node class ObjectType in the server object handle and returns the node identifer.
For the other parameters, refer to opcua add DataType.

opcua add handle Reference srcid reftype target ?forward?

Adds a reference of type reftype (see opcua reftype) between the node identifiers srcid and <target on
the server object handle. The optional parameter forward must be a boolean indicating the direction of the
reference (true, the default, is forward, false is inverse).

opcua add handle ReferenceType nodeid parent reftype brname ?attrs?

Adds an new node of node class ReferenceType in the server object handle and returns the node identifer.
For the other parameters, refer to opcua add DataType.

opcua add handle Variable nodeid parent reftype brname ?typeid attrs cmd?

Adds an new node of node class Variable in the server object handle and returns the node identifer. The
optional parameter typeid must be a known data type name (see opcua types) or a node identifier of a
data type or an empty string for a default value. Parameter cmd is an optional data source callback which
produces (read operation) or consumes (write operation) the variable's value. See section Data Source
Callbacks for more information. For the other parameters, refer to opcua add DataType.

opcua add handle VariableType nodeid parent reftype brname ?typeid attrs?

Adds an new node of node class VariableType in the server object handle and returns the node identifer.
The optional parameter typeid must be a known data type name (see opcua types) or a node identifier of

a data type or an empty string for a default value. For the other parameters, refer to opcua add DataType.

opcua add handle View nodeid parent reftype brname ?attrs?

Adds an new node of node class View in the server object handle and returns the node identifer. For the
other parameters, refer to opcua add DataType.

opcua attrs ?list|default? ?name?

Without further arguments returns a list of attribute names the opcua read and opcua write commands
support, e.g. Value, NodeClass, etc. With the list keyword a list of the data types used as attributes for
creation of nodes with the opcua add command is returned. With the default keyword combined with the
name of the data type a dictionary describing the default attributes of this type is returned, e.g opcua
attrs default DataTypeAttributes yields a default dictionary for creation of a DataType node.

opcua browse handle nodeid ?dir refid mask ...?

Performs a browse operation on the client or server object handle starting at the node nodeid. The browse
direction can be specified with the dir parameter as Forward, Inverse, or Both. Forward is the default
direction. The optional mask and following parameters select specific node classes Object, Variable,
Method, ObjectType, VariableType, ReferenceType, DataType, and View. The result of the browse
operation is a list where each item is made up of node identifier, browse name (qualified name), display
name (locale and text), node class, reference node identifier, and type node identifier.

opcua call handle nodeid methodid ?type value ...?

Calls the method with node identifier methodid on the object with node identifier nodeid on the client or
server object handle with parameters described by pairs of type (data type, e.g. Int32 or String) and
value (the parameter's value). The method's result is returned. The method is carried out on the server,
i.e. when directly used with a server handle there's no network traffic since the method is run locally.

opcua children handle nodeid

Returns the child node identifiers of the given node identifier nodeid on the client or server object handle.

opcua connect handle url ?user password?

Connects the client object handle to the URL url using the optional credentials user and password.

opcua datasources handle

Returns information on data sources (variable nodes with callbacks) for the server object handle. For each
data source two list elements with node identifier and callback command are added to the result.

opcua datetime ?seconds|...|utc ?value??

Returns either POSIX or OPC/UA timestamps as Tcl_WideInt values. If called without further parameters
the current OPC/UA local DateTime is returned. If called with the single keyword utc the current OPC/UA
UtcTime is returned. Otherwise, value is required and converted from POSIX to OPC/UA UtcTime for the
keywords seconds, milliseconds, and microseconds, and from OPC/UA UtcTime to POSIX for the keywords
unixseconds, unixmillis, and unixmicros, respectively.

opcua deftypes handle nsuri defs

Defines custom datatypes (currently only structures) in the server object handle and namespace URI
nsuri. The namespace is created with the opcua add Namespace command and must exist before the opcua
deftypes command is called. The parameter defs describes the structures to be created. The command
does all necessary steps to create the required nodes in the server object's address space and to store an
XML bytestring describing the (de)serialization for the structures as extension objects. That XML is later to
be reparsed with the opcua gentypes command. For details refer to section Defining Custom Data
Structures below.

opcua delete handle Node nodeid ?withrefs?

Deletes the node with identifier nodeid on the server object handle. If withrefs is true, the references of
the node are deleted, too.

opcua delete handle Reference srcid reftypeid targetid ?forward? ?bidir?

Deletes the reference described by srcid, reftypeid, and targetid on the server object handle. The
boolean flag forward selects forward or inverse direction of the reference to be deleted. The boolean flag
bidir requests a bidirectional reference to be deleted. The default is to delete in forward direction only.

opcua destroy handle

Destroys the client or server object handle and releases its resources, e.g. closes network connections,
tears down the handle specific namespace, etc.

opcua disconnect handle

Disconnects the client object handle.

opcua endpoints ?url?

Queries the local OPC/UA server opc.tcp://localhost:4840 or the server specified by the url parameter
for endpoints and returns a list of URLs describing the endpoints found.

opcua genstubs handle ?strip ...?

Generates stubs for methods in the handle specific address space derived from the client or server object
handle. The address space is traversed and browse paths and node class paths are accumulated. The
resulting browse paths optionally get the prefix strip stripped off from the beginning and optionally
filtered using the glob patterns following the strip parameter. For all nodes matching the node class path
pattern Object/Method the optional InputArguments and OutputArguments child nodes are retrieved and
stub procedures are written using the browse path and argument information.

opcua gentypes handle

Generates custom data type mappings using information obtained from analyzing the address space
derived from the client or server object handle. This feature is highly experimental and requires the tDOM
package for parsing XML. It can create encoders/decoders for simple structure data types defined in the
address space which perform a mapping from/to Tcl dictionaries. For further information, see the
server_types.tcl and client_types.tcl scripts in the examples directory. If this command is used, it
should be invoked prior to creating method stubs, since methods may require custom data types in their
arguments.

opcua info ?handle?

Returns the object type of handle, either client or server. If handle is omitted, a list of all known client
and server object handles is returned.

opcua methods handle

Returns information on methods for the server object handle. For each method three list elements with
node identifier, result type name, and callback command are added to the result.

opcua monitor handle configure subid monid ?cmd mode interval?

Configures the monitor monid in subscription subid on the client object handle with the provided
parameters, see opcua monitor new for further information.

opcua monitor handle destroy subid monid

Destroys the monitor monid in subscription subid on the client object handle and releases all its resources.

opcua monitor handle info subid ?monid?

Returns information on monitor monid in subscription subid on the client object handle. The result is a list
of monitor type (data or event), the node identifier, the callback command, the attribute, and the interval.
If monid is omitted, a list of all monitor identifers registered in the subscription is returned.

opcua monitor handle new subid type cmd nodeid ?attr mode interval?

Creates a monitored item of type (data or event) for the node identifier nodeid in the subscription subid
on the client object handle. The optional parameter attr selects the attribute of the node to be monitored
(Value is the default). The monitor mode mode must be one of Disabled, Sampling, and Reporting. The
monitoring interval interval must be given as number of milliseconds, if omitted its value is derived from
the subscription. The callback command parameter cmd is discussed in section Monitor Callbacks below.
The command returns a numeric identifier of the newly created monitor.

opcua namespace handle ?uri?

Returns the namespace index for the namespace uri of the client or server object handle (or throws an
error e.g. when the namespace doesn't exist). If uri is omitted, a list of all known namespace indices and
corresponding URIs is returned.

opcua new ?client|server port name?

Creates a new client or server object and returns its handle. The port parameter must be present for
server objects and specifies the server's TCP port. The optional name is the object name (the handle). If no
arguments are given to opcua new a client object with an automatic name is created. During that process
the Tcl namespace ::opcua::name is created which later is used to hold method stub procedures and other
information. That namespace is tied to the life time of the client or server object.

opcua parent handle nodeid

Returns the parent node identifier of the given node identifier nodeid on the client or server object handle.

opcua ptree handle ?nodeid?

Returns information similar to opcua tree using the client or server object handle. The address space is
traversed starting at the node identifier nodeid (the root node if omitted). The result list is made up of
browse path name, node identifier, node class path, reference node identier, and type node identifier. The

browse path name is a path name like notation made up of the browse names pointing to the final node as
seen from the starting node. Browse names are written as qualified names, i.e. including the numeric
namespace index if not in root namespace. Similarly, the node class path is a path name like notation made
up of the node classes of all nodes along the path. The opcua ptree command is used internally by the
opcua genstubs command in order to filter out objects and methods when creating stub Tcl commands to
invoke methods on objects.

opcua read handle nodeid ?attr?

Performs a read operation on the client or server object handle and returns the value of attribute attr of
the node identifier nodeid. If attr is omitted, it defaults to the Value attribute.

opcua reftype ?name?

Returns the node identifier for the reference type name. When name is omitted, a list of all reference type
names is returned.

opcua root

Returns the node identifier of the root node.

opcua run handle ?ms?

Runs asynchronous operations (subscriptions, monitored items) on the client object handle for ms
milliseconds. If ms is omitted, that duration defaults to one millisecond.

opcua sc2str code

Translates the numeric status code code to an error message string.

opcua servers ?url?

Queries the local OPC/UA server opc.tcp://localhost:4840 or the server specified by the url parameter
for server information and returns a list made up of three elements per server with server name, server
URL, and server description.

opcua start handle

Starts the server object handle. See section Server Object And Event Loop below for further
information.

opcua stop handle

Stops the server object handle.

opcua subscription handle configure id ?interval lifetime keepalive max prio?

Configures the subscription id on the client object handle. See opcua subscription new for the optional
arguments.

opcua subscription handle destroy id

Destroys the subscription id on the client object handle.

opcua subscription handle info ?id?

Returns information about subscription id on the client object handle as a list of enable flag, interval,
lifetime, keepalive, and maximum counters, and the priority value. If id is omitted, a list of all subscription
identifiers of the client object is returned.

opcua subscription handle new ?flag interval lifetime keepalive max prio?

Creates a new subscription (a container for monitored items, see opcua monitor) on the client object
handle and returns a numeric identifier of it. The following optional parameters control properties of the
subscription: flag is the initial enable state (on by default), interval, lifetime, keepalive, and max the
timing and queuing parameters, and prio the subscription's priority.

opcua subscription handle off id

Disables the subscription id on the client object handle.

opcua subscription handle on id

Enables the subscription id on the client object handle.

opcua translate handle nodeid reftype target ...

Performs a translate operation on the client or server object handle. The operation starts at node identifier
nodeid and traverses the object tree along the references reftype and browse name target. A list made
up of the node identifier, namespace URI, and server index of the final target is returned as the result.
References can be preceeded with an exclamation mark in order to reverse their direction. A reference may
be abbreviated as slash for HierarchicalReferences or as dot for Aggregates.

opcua tree handle ?nodeid?

Returns information similar to opcua browse using the client or server object handle. The address space is
traversed starting at the node identifier nodeid (the root node if omitted). The result list is made up of tree
level (0-based), node identifier, browse name (qualified name), display name (locale and text), node class,
reference node identifier, and type node identifier.

opcua type handle nodeid ?attr?

Performs a read operation on the client or server object handle like opcua read but instead of the
attribute's value returns the type name of attribute attr of the node identifier nodeid. If attr is omitted, it
defaults to the Value attribute.

opcua types basic|empty|list|nodeid ?name?

Returns a list of OPC/UA type names for the basic and list subcommands. Basic types are primitives (e.g.
integer numbers) for which a mapping to Tcl objects is provided. The empty subcommand requires name to
be a known OPC/UA type name and produces and returns an empty value of this type, e.g. 0.0 for a
floating point type. The nodeid subcommand returns the node identifier for the type name.

opcua write handle nodeid ?attr? type value

Performs a write operation on the client or server object handle writing value with type type into the
attribute attr of the node identifier nodeid. If attr is omitted, it defaults to Value.

OPC/UA Ensemble

The current implementation uses an ensemble and namespace opcua, i.e. the command opcua info can be
alternatively written as opcua::info. Some more complex subcommands of the opcua namespace are implemented in
Tcl, namely the opcua tree and opcua genstubs procedures.

Node Identifiers

Numeric node identifiers can be written as ns=N;i=I where N is the numeric namespace, and I the numeric identifier.
Likewise, string node identifiers are written as ns=N;s=S with S being the string identifier. GUID node identifiers are
written as ns=N;g=G where the GUID is G with the usual format as sequence of hexadecimal numbers and dashes. The
namespace part can be left out when namespace zero is addressed. Currently, byte string node identifiers are not
supported. If the format cannot be determined (e.g. since the equal sign is missing) the fallback chosen is string node
identifier in namespace zero. String named namespaces are not supported.

Qualified Names

Qualified names are used for example in the opcua browse and opcua translate operations as so called browse
names. These are made up of an optional numeric namespace prefix (a number followed by a colon) and a name, e.g.
2:MyObject. The namespace prefix is left out if the name refers to namespace zero.

Supported Data Types

Currently, most of the data types of namespace zero are supported and can be mapped to/from Tcl, i.e. integral and
floating point numbers, strings, GUIDs, and interal extension objects (similar to structures). For the latter, dictionaries
are used in both directions, i.e. for encoding, a dictionary is searched for the respective member names, for decoding,
a dictionary is created from the internal representation using the member names of the data type, see opcua attrs
default for example. Support for custom data types is highly experimental and underdocumented (see opcua
gentypes).

Monitor Callbacks

Monitor callbacks are invoked when a monitored item (data or event) is received. The callback parameter given in opcua
monitor new must have proper list format and gets a single value (data) or a list of values (event) appended prior to
invocation.

Data Source Callbacks

Data source callbacks are invoked when a DataValue is read or written to. The callback parameter given in the node
creation (opcua add Variable) must have proper list format and gets the following parameters appended prior to
invocation: the node identifier of the DataValue, the operation (either read or write), and the value attribute for write
operations. For read operations the callback must return a two element list of the data type (e.g. String or Int32)
and the value itself. If the callback returns the TCL_BREAK return code, the value is assumed to be an array and
splitted into list elements which then are converted to OPC/UA data in an OPC/UA array.

Method Callbacks

Method callbacks are invoked when a Method node is called. The callback parameter given in the node creation (opcua
add Method) must have proper list format and gets the following parameters appended prior to invocation: the object
node identifier, the method node identifier, and zero or more parameters as decribed in the input argument list at
creation time of the Method node. The callback must return a single value which is converted to the respective OPC/UA
data value according to the output argument information at creation of the Method node. Multiple output arguments

are not supported. The same rule regarding the TCL_BREAK return code as described in section Data Source
Callbacks is applied to support array results.

Client Object And Event Loop

A client object obtained with opcua new client requires a running event loop only when subscriptions and/or
monitored items are involved. All other operations are performed synchronously (and thus blocking). In order to
receive monitored information the opcua run operation must be invoked regularly e.g. in a timed after procedure.

Client Example

 package require topcua

 # create client
 opcua new client C

 # connect to server
 opcua connect C opc.tcp://localhost:4840

 # get MyNamespace
 set ns [opcua namespace C MyNamespace]

 # generate stub procs to methods in server
 # these are created in the client specific ::opcua::C namespace
 opcua genstubs C /Root/Objects/${ns}:MyObject/${ns}:

 # list all procs in client specific namespace
 puts stderr [info procs ::opcua::C::*]

 # call stubs
 puts stderr [::opcua::C::Reverse esreveR]
 puts stderr [::opcua::C::WordSplit "word\n\nsplit"]

 # read a variable
 puts stderr [opcua read C "ns=${ns};ItsTclTime"]

 # monitor callback proc
 proc monitor {data} {
 puts stderr "Monitor: $data"
 }

 # make a subscription
 set sub [opcua subscription C new 1 1000.0]

 # make a monitor
 set mon [opcua monitor C new $sub data monitor "ns=${ns};ItsTclTime"]
 puts stderr "Subscription: $sub"
 puts stderr "Monitor: $mon"

 # handle monitors for a few seconds
 set count 0
 while {$count < 600} {
 update
 opcua run C 20
 incr count
 }

 # delete monitor and subscription
 opcua monitor C destroy $sub $mon
 opcua subscription C destroy $sub

 # shut down the server using a method call
 ::opcua::C::Exit

 # destroy the client
 opcua destroy C

Server Object And Event Loop

A server object obtained with opcua new server requires a running event loop as long as it is in running state (started
with opcua start). It re-dispatches itself using a Tcl timer callback whose interval is controlled by the protocol timers
of the OPC/UA stack implementation.

Server Example

 package require topcua

 # create server
 opcua new server 4840 S

 # implementations of methods etc.
 namespace eval ::opcua::S {
 # method callback
 proc _reverse {obj meth string} {
 return [string reverse $string]
 }
 # method callback
 proc _wordsplit {obj meth string} {
 set w [regexp -all -inline {\S+} $string]
 # return code break makes into an array result
 return -code break $w
 }
 # method callback
 proc _exit {obj meth} {
 after 1000 [namespace current]::_real_exit
 return {}
 }
 # helper proc
 proc _real_exit {} {
 catch {
 ::opcua::stop S
 ::opcua::destroy S
 }
 exit 0
 }
 # data source callback
 proc _its_tcl_time {node op {value {}}} {
 if {$op eq "read"} {
 return [list String [clock format [clock seconds]]]
 }
 return {}
 }
 }

 # create our OPC/UA namespace
 set ns [opcua add S Namespace MyNamespace]

 # get Objects folder
 set OF [lindex [opcua translate S [opcua root] / Objects] 0]

 # create an object in our namespace in Objects folder
 set obj [opcua add S Object "ns=$ns;s=MyObject" $OF Organizes \
 "$ns:MyObject"]

 # create methods on object
 set meth [opcua add S Method "ns=$ns;s=Reverse" \
 $obj HasComponent \
 {String out} "$ns:Reverse" {String in} \
 ::opcua::S::_reverse]
 set meth [opcua add S Method "ns=$ns;s=WordSplit" \
 $obj HasComponent \
 {String out} "$ns:WordSplit" {String in} \
 ::opcua::S::_wordsplit]
 set meth [opcua add S Method "ns=$ns;s=Exit" \
 $obj HasComponent \
 {} "$ns:Exit" {} \
 ::opcua::S::_exit]

 # create a variable in our namespace in Objects folder
 set var [opcua add S Variable "ns=$ns;s=ItsTclTime" \
 $OF Organizes \
 "$ns:ItsTclTime" {} {} \
 ::opcua::S::_its_tcl_time]

 # dump methods
 puts stderr [opcua methods S]

 # generate stubs to methods in server
 # these are created in the server specific ::opcua::S namespace
 opcua genstubs S /Root/Objects/${ns}:MyObject/${ns}:

 # list all procs in server specific namespace
 puts stderr [info procs ::opcua::S::*]

 # call stubs directly on server
 puts stderr [::opcua::S::Reverse esreveR]
 puts stderr [::opcua::S::WordSplit "word\n\nsplit"]

 # read our variable
 puts stderr [opcua read S $var]

 # start server
 opcua start S

 # enter event loop
 vwait forever

Defining Custom Data Structures

 package require topcua

 # create server
 opcua new server 4840 S

 # create our namespace
 set NS http://www.androwish.org/TestNS/
 set nsidx [opcua add S Namespace $NS]

 # create structs
 opcua deftypes S $NS {
 struct KVPair {
 String name
 String value
 }
 struct RGB {
 UInt16 red
 UInt16 green
 UInt16 blue
 }
 struct NamedColor {
 String name
 RGB color
 }
 }

 # import type defs
 opcua gentypes S

 # make some variables using the structs from above
 set OF [lindex [opcua translate S [opcua root] / Objects] 0]
 foreach {name type} {
 X1 KVPair
 X2 RGB
 X3 NamedColor
 } {
 set att [opcua attrs default VariableAttributes]
 dict set att dataType [opcua types nodeid S $type]
 dict set att value [list $type [opcua types empty S $type]]
 opcua add S Variable "ns=${nsidx};s=$name" $OF Organizes \
 "${nsidx}:$name" {} $att
 }

 # start server
 opcua start S

 # enter event loop
 vwait forever

undroidwish

undroidwish

AndroWish sans the borg,
a project just for pun.

Experimental. This is a single-file Tcl/Tk binary for Windows (32 bit, optional 64 bit) and Linux using parts of the
AndroWish source tree, in particular the ZIP virtual file system and the SDL/AGG/freetype based X11 emulation for
rendering. So far it is a proof of concept which eventually can be extended to run on another fruity smartphone
platform. It is built by executing platform dependent shell scripts which are available for Windows, Linux, and other
platforms. Ready-made binaries for 32 and 64 bit Windows and Intel Linux are listed on the Downloads page. It is
possible to build undroidwish on Debian platforms with ARM processors like the Raspberry Pi or the Beaglebone.

Warning! undroidwish.exe is a Windows 32 bit binary which like other nicely playing portable apps does not write to
the registry or otherwise modifies the system. But running it on your Windows PC is at your own risk. It is believed to
be a CAREFUL (Click And Run Executable For Unplanned Leisure) thing. Although in the first place it might look like Tk
in an X11 server, it provides all the benefits of the underlying AGG/SDL2/freetype based X11 emulation, i.e. anti-
aliased rendering of lines, circles, and fonts. It even allows to smoothly zoom the Tk root window by using the mouse
wheel combined with the control key.

Wayland. Another build script is provided which allows building undroidwish with the SDL2 Wayland video driver. This
is partially tested on the GNOME based Fedora 26-29 Workstation, Debian 9 "Stretch", and CentOS 7.5. As of 2018-
02-16 this variant is built with the KMSDRM SDL2 video driver enabled, which allows to run from a console without
requiring any display manager infrastructure, provided that the Linux system has decent graphics hardware allowing
for kernel mode setting and direct render mode.

FreeBSD and OpenBSD. These are very similar to the Linux version (including almost all extensions) but only
partially tested on FreeBSD-11 on x86 processors and OpenBSD-6.2 on amd64 processors.

OpenIndiana Hipster (based on illumos, based on SunOS 5.11). As for FreeBSD with many extensions but only
partially tested in a 32 bit enviroment.

MacOS. Alpha versions are available since 2017-09-01, but are only partially tested on MacOS 10.11 (El Capitan) and
10.13 (High Sierra).

Haiku. Partial support for the Haiku operating system is now available thanks to SDL2's video driver architecture. This
is still highly experimental.

 There are Tk ports
 one of them is undroidwish
 which runs on Haiku

Raspberry Pi. A Raspberry specific video driver called RPI is available in SDL2 which provides a similar feature set as
the KMSDRM driver, i.e. allows to run undroidwish in frame buffer mode. When built for/on the Raspberry this driver is
turned on by default, provided a recent Debian 9 (Raspbian) is used as build environment.

jsmpeg Video Driver. This is a special video driver which is described further in jsmpeg SDL Video Driver. It allows to
direct the undroidwish display to a page in a modern web browswer, e.g. Firefox, Safari, or Chrome. The feature will be
available soon in most Linux, Windows, and MacOSX variants of undroidwish.

All undroidwish variants have many of the advanced Tcl/Tk extensions from Batteries Included built in: tkpath,
tktreectrl, tkimg, and Canvas3D (which requires the display driver to support OpenGL 2.x or better). Tcl-only
extensions (without machine specific libraries) like tcllib, tksqlite, and bwidgets are included, too.

Some SDL specific command line options described in Beyond AndroWish can be used to control the size of the Tk
root window or its resizability. Other SDL specific things can be controlled at runtime using the sdltk command.

In order to start built in scripts directly (which were baked into the ZIP file system), the script to be executed must be
specified on the command line with its path within the embedded ZIP file system. Here are some examples.

The widget demo

 undroidwish.exe builtin:sdl2tk8.6/demos/widget

TkSQLite, a graphical frontend to SQLite databases

 undroidwish.exe builtin:tksqlite0.5.13/tksqlite.tcl

The PostScript tiger, a tkpath demo

 undroidwish.exe builtin:tkpath0.3.3/demos/tiger.tcl

http://www.androwish.org/index.html/wiki?name=AndroWish
http://www.androwish.org/index.html/dir?name=undroid
http://www.androwish.org/download
http://www.raspberrypi.org
http://www.beagleboard.org
http://www.ch-werner.de/AndroWish/undroidwish-65f348db8d-win32.exe
http://wayland.freedesktop.org
http://getfedora.org
http://www.debian.org
http://www.centos.org
http://www.haiku-os.org

Canvas3D demo, multiple threads

 undroidwish.exe builtin:Canvas3d1.2.4/demo/threads.tcl

Canvas3D demo of VR rendering

 undroidwish.exe builtin:Canvas3d1.2.4/demo/vr_chick.tcl

Some shortcuts are provided as shown in the table below.

Script URL Description
builtin:widget The widget demo
builtin:tksqlite Graphical frontend to SQLite databases
builtin:imgdemo Supported image formats
builtin:tkpdemo TkPath demo
builtin:3ddemo Canvas3D demo
builtin:tkcon Tk console
builtin:treectrl Tree control widget demo
builtin:tktable Table widget demo
builtin:bugz See Tk_Bugz in Tcl'ers Wiki, playable with a game pad
builtin:tkchat TkChat instant messaging application
builtin:zint Demo for ZINT barcode generator
builtin:sdx SDX utility
builtin:dungfork Read-only /etc browser demo using tcl-augeas
builtin:vncviewer Simple VNC viewer using tkvnc
builtin:notebook Will Duquette's Notebook App
builtin:tkmc Simple clone of Midnight Commander from Tcl'ers wiki
builtin:zinc-widget Tkzinc demo
builtin:tkinspect Tool to inspect other running Tk applications
builtin:stardom Small XML browser/editor
builtin:helpviewer tkhtml based help file viewer
builtin:mpksc mpexpr based calculator
builtin:mktclsh vanillawish only: extract a vanillatclsh
builtin:TDK/checker vanillawish only: Tcl Dev Kit checker
builtin:TDK/compiler vanillawish only: Tcl Dev Kit compiler

builtin:TDK/debugger vanillawish only: Tcl Dev Kit debugger
builtin:TDK/inspector vanillawish only: Tcl Dev Kit inspector
builtin:TDK/tape vanillawish only: Tcl Dev Kit tape
builtin:TDK/tclapp vanillawish only: Tcl Dev Kit tclapp
builtin:TDK/tclsvc vanillawish only: Tcl Dev Kit tclsvc
builtin:TDK/vfse vanillawish only: Tcl Dev Kit vfse

http://wiki.tcl.tk/4236
http://tkchat.tcl.tk
http://wiki.tcl.tk/3712

usbserial command

usbserial command

Name

usbserial - transfer data over USB-serial converters

Synopsis

package require Usbserial
usbserial ?devicename?

Description

This command is used to transfer data over supported USB-serial converters (FTDI, CDC, Prolific, etc.), see this
reference. When no further argument is given to the usbserial command, a list of supported USB device names in
the form of zero or more /dev/bus/usb/MMM/NNN device special file names is returned. When the USB device name of a
supported USB-serial converter is given as argument, usbserial opens that USB device and returns a Tcl channel
handle for it. This handle may be used with fconfigure, gets, read, puts, and close. The options -mode, -ttycontrol,
and -ttystatus to fconfigure are supported by the channel. However, support for getting and/or setting control
lines varies between different USB-serial converter chips. Note, that similar to a normal POSIX tty device an USB device
name can be opened more than once simultaneously.

List of supported devices

Vendor
ID

Product
ID

Remarks

0x10c4 0xea60 CP2102
0x10c4 0xea70 CP2105
0x10c4 0xea71 CP2108
0x10c4 0xea80 CP2110
0x067b 0x2303 Prolific PL2303
0x0403 0x0601 FTDI FT232R
0x0403 0x6015 FTDI FT231X
0x2341 0x0001 Arduino UNO
0x2341 0x0010 Arduino Mega 2560
0x2341 0x003b Arduino Serial Adapter
0x2341 0x003f Arduino Mega ADK
0x2341 0x0042 Arduino Mega 2560 R3
0x2341 0x0043 Arduino UNO R3
0x2341 0x0044 Arduino Mega ADK R3
0x2341 0x8036 Arduino Leonardo
0x16c0 0x0483 TeensyDuino
0x03eb 0x2044 ATMEL LUFA CDC Demo Application
0x1eaf 0x0004 Leaflabs Maple
0x1a86 0x7523 CH 34x
0x1a86 0x5523 CH 34x
0x4348 0x5523 CH 34x

http://code.google.com/p/usb-serial-for-android/

uvc

uvc command

Name

uvc - Interface to UVC cameras using libuvc

Synopsis

package require tcluvc
uvc option ?arg ...?

Description

This command provides several operations to interface UVC USB cameras using the infrastructure provided by libuvc
and libusb which is available on common Linux, FreeBSD, and MacOSX platforms and sometimes found working on
Android devices. option indicates what to carry out. Any unique abbreviation for option is acceptable. The valid
options are:

uvc close devid

Closes the device identified by devid which has been opened before using uvc open.

uvc convmode devid ?flag?

Reports or modifies the conversion mode for frames acquired from the opened device identified by devid.
Conversion mode 1 (on/true) performs frame format/color space conversions in the special UVC thread
which controls the USB transfers, mode 0 (off/false) does this instead in the normal Tcl event loop. The
default mode is 1.

uvc counters devid

Reports a three element list of statistic counters on the device identified by devid. The first element is the
number of video frames received, the second the number of video frames processed with uvc image, and
the third the number of video frames dropped.

uvc devices

Returns device information which can be used for uvc open as a list. Each device adds three elements to
the list: the first element is the device name as a colon separated string with two or three fields being
vendor ID (hexadecimal, 0x prefix is optional), product ID (hexadecimal, 0x prefix is optional), and
bus/device numbers separated by a dot; the second and third list elements are the vendor name, and the
product name. To open the device, its name (the colon separated string) must be used, the other two
items are available for presentation purposes. If udev support is available (Linux specific), this list is
refreshed on plug and unplug of devices. Otherwise, the list is a snapshot of suitable devices currently
connected.

uvc format devid ?index fps?

Returns or changes the frame format of the device identified by devid. The optional parameter index is an
integer number giving the index of the frame format returned in uvc listformats. The optional parameter
fps is the frame rate. If omitted, the currently active index and frame rate are returned. Changing the
frame format and rate is only possible if the device is not capturing images.

uvc greyshift devid ?shift?

Returns or sets the bit shift to be applied on grey images with a bit depth higher than 8 which are
captured from device devid. The default value is 4, which is suitable for greyscale cameras with 12 bit
resolution. The shift is not applied when the image subcommand retrieves raw byte array data.

uvc image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

uvc info ?devid?

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device nameand the second the image callback command for that device, i.e. the same arguments
which were used on uvc open. If devid is omitted, a list of devids, i.e. all currently opened devices is
returned.

uvc listen ?callback?

Retrieves or sets the callback command called on plug and unplug of devices. When a device is plugged or
unplugged that callback is invoked with two additional arguments: the type of event (add or remove) and
the device name (see uvc devices for the naming convention) which was added or removed. Only usable if
udev support is available.

uvc listformats devid

Returns a dictionary keyed by a format index as integer with the values being another dictionary with
information about the frame size and rate of the respective frame format. The returned indices can be used
in in uvc format to switch to another frame size and/or to change the frame rate.

uvc mbcopy bytearray1 bytearray2 mask

Copies the content of RGB byte array bytearray2 into the byte array bytearray1 using an RGB mask. Both
byte arrays must have identical length which must be a multiple of 3 (for RGB). The main purpose of this
command is to combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph)
the left camera image uses mask 0xFF0000 (red component) and the right camera image uses mask
0x00FFFF (green and blue components).

uvc mcopy photo1 photo2 mask

Copies the content of the photo image photo2 into the photo image photo1 using an ARGB mask. Both
photo images must have identical width, height, and depth. The main purpose of this command is to
combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph) the left camera
image uses mask 0x00FF0000 (red component) and the right camera image uses mask 0x0000FFFF (green
and blue components).

uvc mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

uvc open devname callback

Opens the device with device name devname and establishes callback as command to be invoked on
captured images and finally returns a devid, i.e. a handle to further deal with the device. An additional
parameter is appended when callback is invoked: the devid of the device. For the format of devname see
the description of uvc devices.

uvc orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

uvc parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.
brightness 100 will change the brightness setting of captured images to the device dependent value 100.
The command returns the current device parameters (after the potential change, when keys and values
were given) as a key-value list which can be processed with array set or dict get.

uvc record devid frame width height bpp bytearray

Transcodes the frame described by width, height, bpp, and bytearray to JPEG and writes the result to the
recording file or stream. The recording must have been started with the -user option. An integer number is
returned as result: 1 indicates successful write, 0 no write due to frame rate constraints, and -1 an error
during the write.

uvc record devid pause

Pauses recording to a file or stream.

uvc record devid resume

Continues recording to a file or stream.

uvc record devid start options ...

Starts recording to a file or stream. options control the data format, frames per second, and output
channel. The option -fps specifies the approximate rate in frames per second as a floating point number.
The option -chan specifies the channel to which the frames are written. This channel is detached from the
Tcl interpreter and controlled solely by the uvc record command. The -boundary option specifies a MIME
multipart boundary string and selects the MIME type multipart/x-mixed-replace suitable for streaming to
a web browser. The content type delivered to the browser is image/jpeg. If the -boundary option is
omitted, the output format is raw AVI and requires the channel to be seekable. The option -mjpeg forces
the recorded data to JPEG format, i.e. a transcoding to JPEG will be performed in software, if the device
doesn't already deliver a JPEG stream. The option -user turns off automatic frame write operations to the
recording file or stream when a frame is delivered from the device. Instead, uvc record devid frame must
be invoked in the callback function. The -user option implies -mjpeg.

uvc record devid state

Returns the current recording state as stop, recording, pause, or error. The state error indicates a write
error on the file or stream. In this case no further frames will be written.

uvc record devid stop

Finishes recording to a file or stream and closes the underlying channel.

uvc start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on uvc open is invoked.

uvc state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped, or error if an error has been detected while image
capture was active.

uvc stop devid

Stop capturing images of the device identified by devid.

uvc tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or gray (bpp is 1) byte array bytearray of width times height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

The uvc command tries to lazy load Tk, thus allowing to use it from a normal tclsh. Only when a photo image is
required by a subcommand, Tk must be available and an attempt to load it is made.

v4l2 command

v4l2 command

Name

v4l2 - Video For Linux Two interface

Synopsis

package require v4l2
v4l2 option ?arg ...?

Description

This command provides several operations to interface Video For Linux Two in order to operate camera devices.
option indicates what to carry out on the Video For Linux Two subsystem. Any unique abbreviation for option is
acceptable. The valid options are:

v4l2 close devid

Closes the device identified by devid which has been opened before using v4l2 open.

v4l2 counters devid

Reports a two element list of statistic counters on the device identified by devid. The first element is the
number of video frames received, the second the number of video frames processed with v4l2 image. This
information can be used to detect dropped frames.

v4l2 devices

Returns a list of device names which can be used for v4l2 open. If udev support is available, this list is
refreshed on plug and unplug of devices. Otherwise it is made up of a snapshot of suitable file names in
the /dev directory.

v4l2 greyshift devid ?shift?

Returns or sets the bit shift to be applied on grey images with a bit depth higher than 8 which are
captured from device devid. The default value is 4, which is suitable for greyscale cameras with 12 bit
resolution. The shift is not applied when the image subcommand retrieves raw byte array data.

v4l2 image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

v4l2 info devid

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device name and the second the image callback command for that device, i.e. the same arguments
which were used on v4l2 open. If devid is omitted, a list of devids, i.e. all currently opened devices is
returned.

v4l2 isloopback devname

Tests if devname is a loopback video device and returns true or false.

v4l2 listen ?callback?

Retrieves or sets the callback command called on plug and unplug of devices. When a device is plugged or
unplugged that callback is invoked with two additional arguments: the type of event (add or remove) and
the device name which was added or removed. Only useable if udev support is available.

v4l2 loopback devname ?fourcc width height fps?

Retrieves or sets frame format and rate of the loopback video device devname. The parameter fourcc
specifies the format code, the image size is given as width times height pixels, and the frame rate fps as
fraction, i.e. 1/30, or as an integral number, both expressing frames per second. When no parameters are
specified, the current settings are returned as a four element list of fourcc, width, height, and fps.

v4l2 mbcopy bytearray1 bytearray2 mask

Copies the content of RGB byte array bytearray2 into the byte array bytearray1 using an RGB mask. Both

byte arrays must have identical length which must be a multiple of 3 (for RGB). The main purpose of this
command is to combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph)
the left camera image uses mask 0xFF0000 (red component) and the right camera image uses mask
0x00FFFF (green and blue components).

v4l2 mcopy photo1 photo2 mask

Copies the content of the photo image photo2 into the photo image photo1 using an ARGB mask. Both
photo images must have identical width, height, and depth. The main purpose of this command is to
combine images from two cameras into an anaglyph 3D, where (for a red-cyan anaglyph) the left camera
image uses mask 0x00FF0000 (red component) and the right camera image uses mask 0x0000FFFF (green
and blue components).

v4l2 mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

v4l2 open devname callback

Opens the device with device name (UN*X pathname) devname and establishes callback as command to be
invoked on captured images and returns a devid, i.e. a handle to further deal with the device. Two
additional parameters are appended when callback is invoked: the first is the devid of the device, the
second a frame counter with initial value of zero based on the last start of image capture. If an error is
detected during image capture, the word error is used instead of the frame counter.

v4l2 orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

v4l2 parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.
frame-size 320x240 will change the size of captured images to width 320 and height 240. The command
returns the current device parameters (after the potential change, when keys and values where given) as a
key-value list which can be processed with array set or dict get.

v4l2 start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on v4l2 open is invoked.

v4l2 state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped, or error if an error has been detected while image
capture was active.

v4l2 stop devid

Stop capturing images of the device identified by devid.

v4l2 tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or gray (bpp is 1) byte array bytearray of width times <height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

v4l2 write devid bytearray

Writes the bytes in bytearray to the device identified by devid which must be an open loopback video
device.

v4l2 writephoto devid photo

Writes the content of the photo image photo to the device identified by devid which must be an open
loopback video device. The format written corresponds to RGB4 (see below) with the photo's dimensions.
No color space conversion and no scaling takes place.

The v4l2 command tries to lazy load Tk, thus allowing to use it from a normal tclsh. Only when a photo image is
required by a subcommand, Tk must be available and an attempt to load it is made.

For the fourcc format codes in v4l2 loopback, consult the Linux header file /usr/include/linux/videodev2.h. The
most useful formats are RGB4 (8 bits per color in a 32 bit value per pixel) and RGB3 (8 bits per color packed into 24
bits).

wmf command

wmf command

Name

wmf - Tcl interface to cameras using Windows Media Foundation

Synopsis

package require tclwmf
wmf option ?arg ...?

Description

This command provides several operations to interface cameras using the infrastructure provided by Windows Media
Foundation. option indicates what to carry out on the Windows Media Foundation subsystem. Any unique
abbreviation for option is acceptable. The valid options are:

wmf close devid

Closes the device identified by devid which has been opened before using wmf open.

wmf devices

Returns a list of device names which can be used for wmf open. Each device adds two elements to the list:
its symbolic link to be used in wmf open and its friendly name for presentation.

wmf format devid ?index?

Returns or changes the media format of the device identified by devid. The optional parameter index is an
integer number giving the index of the media format to be used as returned in wmf listformats. If
omitted, the currently active index is returned. Changing the media format is only possible if the device is
not capturing images.

wmf image devid ?photoImage?

Copies the most recent captured image of the device devid into the photo image identified by photoImage
and returns non-zero on success or zero if no data transfer has taken place. If photoImage is omitted, a
four element list is returned with the first element being the image width, the second the image height, the
third the number of bytes per pixel, and the last the image's RGB values with 3 bytes per pixel in red,
green, blue order as a byte array. In this case an error is indicated by throwing an exception.

wmf info devid

Returns information on open devices. If devid is specified, a list of two elements is returned, the first being
the device symbolic link and the second the image callback command for that device, i.e. the same
arguments which were used on wmf open. If devid is omitted, a list of devids, i.e. all currently opened
devices is returned.

wmf listformats devid

Returns a dictionary keyed by a media format index as integer with the values being another dictionary with
information about the frame size and rate of that media format. The respective index can be used in wmf
format.

wmf mirror devid ?x y?

Retrieves or sets flags to mirror captured images along the X or Y axis. Parameters x and y if specified
must be boolean values.

wmf open devname callback

Opens the device with device symbolic link devname and establishes callback as command to be invoked on
captured images and finally returns a devid, i.e. a handle to further deal with the device. Two additional
parameters are appended when callback is invoked: the devid of the device and the current capture state
as in wmf state. For the format of devname see the description of wmf devices.

wmf orientation devid ?degrees?

Retrieves or sets the orientation of captured images regarding image rotation. degrees if specified must be
an integer number.

wmf parameters devid ?key value ...?

Returns or changes device parameters for the device identified by devid given as key-value pairs, e.g.

brightness 100 will change the brightness setting of captured images to the device dependent value 100.
The command returns the current device parameters (after the potential change, when keys and values
were given) as a key-value list which can be processed with array set or dict get.

wmf record devid frame width height bpp bytearray

Transcodes the frame described by width, height, bpp, and bytearray to JPEG and writes the result to the
recording file or stream. The recording must have been started with the -user option. The bits per pixel
parameter bpp must be 3. An integer number is returned as result: 1 indicates successful write, 0 no write
due to frame rate constraints, and -1 an error during the write.

wmf record devid pause

Pauses recording to a file or stream.

wmf record devid resume

Continues recording to a file or stream.

wmf record devid start options ...

Starts recording to a file or stream. options control the data format, frames per second, and output
channel. The option -fps specifies the approximate rate in frames per second as a floating point number.
The option -chan specifies the channel to which the frames are written. This channel is detached from the
Tcl interpreter and controlled solely by the wmf record command. The -boundary option specifies a MIME
multipart boundary string and selects the MIME type multipart/x-mixed-replace suitable for streaming to
a web browser. The content type delivered to the browser is image/jpeg. If the -boundary option is
omitted, the output format is raw AVI and requires the channel to be seekable. The option -mjpeg forces
the recorded data to JPEG format, i.e. a transcoding to JPEG will be performed in software, if the device
doesn't already deliver a JPEG stream. The option -user turns off automatic frame write operations to the
recording file or stream when a frame is delivered from the device. Instead, wmf record devid frame must
be invoked in the callback function. The -user option implies -mjpeg.

wmf record devid state

Returns the current recording state as stop, recording, pause, or error. The state error indicates a write
error on the file or stream. In this case no further frames will be written.

wmf record devid stop

Finishes recording to a file or stream and closes the underlying channel.

wmf start devid

Starts capturing images of the device identified by devid. When an image is ready, the callback command
set on wmf open is invoked.

wmf state devid

Returns the image capture state of the device identified by devid. The result is the string capture if the
device is started, stopped if the device is stopped.

wmf stop devid

Stop capturing images of the device identified by devid.

wmf tophoto width height bpp bytearray ?rot mirrorx mirrory?

Makes the RGB (bpp is 3) or gray (bpp is 1) byte array bytearray of width times height pixels into a Tk
photo image. Optionally, the data is rotated by rot degrees (possible values 0, 90, 180, 270) and/or
mirrored along the X and/or Y axis as specified by the boolean values mirrorx and mirrory.

zbar command

zbar command

Name

zbar::* - interface to the ZBar barcode scanner library.

Synopsis

package require zbar
zbar::decode ?options?
zbar::async_decode ?options?
zbar::symbol_types

Description

These commands are used to scan barcodes off pixel image data.

zbar::decode photoEtc ?syms?

Scans the photo image photoEtc for barcode information. Alternatively, photoEtc can be a four element list
describing a greyscale or RGB image as a byte array with 8 bits per color component. The elements must
be width, height, number of color components and byte array of the image's pixels in this order. The
optional parameter syms must be a list of barcode symbologies to be scanned for. If omitted, all known
symbologies are tried. The command returns a three element list with the first element being the number
of milliseconds spent on decoding. The second element is the decoded symbology on success or an empty
string on failure, and the last element is the scan result as a byte array.

zbar::async_decode photoEtc callback ?syms?

Similar to zbar::decode but the decoder is run as a background thread and the result is presented to a
callback procedure. It requires the Tcl core being built with thread support, and a running event loop
since the callback is invoked as an event or do-when-idle handler. Three additional arguments are passed
to callback: the number of milliseconds for decoding, the decoded symbology on success or an empty
string on failure, and the scan result as a byte array. The optional parameter syms has the same meaning
as in the zbar::decode command. Caution: only a single thread instance is supported per Tcl interpreter,
i.e. another asynchronous decode process can only be started when a previous decode process has
finished.

zbar::async_decode status

Returns the current state of the asynchronous decode thread as a string: stopped when no asynchronous
decode thread has been started, running when a asynchronous decode is in progress, and ready when the
next asynchronous decode can be started.

zbar::async_decode stop

Stops the background thread for asynchronous decoding if it has been implicitely started by a prior
zbar::async_decode. This can be useful to conserve memory resources.

zbar::symbol_types

Returns a list of supported symbologies of the scanner, currently EAN8, UPCE, ISBN10, UPCA, EAN13, ISBN13,
DATABAR, DATABAR_EXP, I25, CODABAR, CODE39, QRCODE, CODE93, and CODE128.

ZIP virtual file system

ZIPFS

AndroWish comes with a special ZIP virtual file system which uses mmap(2) to read-only map a ZIP file (in this case
AndroWish's APK, i.e. its own installation package) into the process address space to speed up startup time and
subsequent read accesses. While this file system was designed primarily for AndroWish it can be used on other
platforms, too. Namely, undroidwish uses it on Windows and Linux to mount an archive of Tcl and native extensions
which is appended to the executable portion of its binary. It is implemented in the files zipfs.c and zipfs.h in
AndroWish's .../jni/tcl/generic folder and enabled in the Tcl core by the presence of the C preprocessor macro
ZIPFS_IN_TCL.

Low-level C interface

Tclzipfs_Init(Tcl_Interp *interp)

Performs one-time initialization of the file system and registers it process wide. Additionally, a package
named zipfs is provided and supplemental Tcl commands are created in the given interpreter.

Tclzipfs_Mount(Tcl_Interp *interp, const char *zipname, const char *mntpt, const char *passwd)

Mounts the ZIP archive file zipname on the mount point mntpt using the optional ZIP password passwd.
Errors during that process are reported in the interpreter interp. If zipname is a NULL pointer, information
on all currently mounted ZIP file systems is written into interp's result as a sequence of mount points and
ZIP file names.

Tclzipfs_Unmount(Tcl_Interp *interp, const char *zipname)

Undoes the effect of Tclzipfs_Mount(), i.e. unmounts the mounted ZIP archive file zipname. Errors are
reported in the interpreter interp.

Tcl commands

The zipfs package provides Tcl with the ability to mount the contents of a ZIP file as a virtual file system.

zipfs::exists filename

Return 1 if the given filename exists in the mounted zipfs and 0 if it does not.

zipfs::find dir

Recursively lists files including and below the directory dir. The result list consists of relative path names
starting from the given directory. This command is also used by the zipfs::mkzip and zipfs::mkimg
commands.

zipfs::info file

Return information about the given file in the mounted zipfs. The information consists of (1) the name of
the ZIP archive file that contains the file, (2) the size of the file after decompression, (3) the compressed
size of the file, and (4) the offset of the compressed data in the ZIP archive file.

Note: querying the mount point gives the start of ZIP data offset in (4), which can be used to truncate the
ZIP info off an executable.

Note: the file of a mounted ZIP archive appears as directory but can be opened and read like a regular file if
the mount process detected a non archive area in front of the ZIP archive, e.g. when the ZIP archive was
appended to an executable file. In this case that area can be read using the Tcl open and read commands
but file copy treats the mounted archive as a directory.

zipfs::list ?-glob|-regexp? ?pattern?

Lists files of any or all of the mounted ZIP archives. If pattern is omitted all files are listed. Otherwise
pattern is interpreted as a glob or regexp pattern and used to list only files matching this pattern.

zipfs::lmkimg outfile inlist ?password? ?infile?

Like zipfs::mkimg but instead of an input directory inlist must be a list where the odd elements are the
original input file names as copied into the archive and the even elements their respective names within the
archive.

zipfs::lmkzip outfile inlist ?password?

Like zipfs::mkzip but instead of an input directory inlist must be a list where the odd elements are the
original input file names as copied into the archive and the even elements their respective names within the
archive.

zipfs::mkimg outfile indir ?strip? ?password? ?infile?

http://www.androwish.org/index.html/wiki?name=AndroWish
http://en.wikipedia.org/wiki/Zip_%2528file_format%2529
http://www.androwish.org/index.html/artifact/5e8fa959751efdbec16c5e86d396ed9da18e4946
http://www.androwish.org/index.html/artifact/041e4f55b75f0a2e26198f8eaad188c0ae005759

Create an image (potentially a new executable file) similar to zipfs::mkzip. If the infile parameter is
specified, this file is prepended in front of the ZIP archive, otherwise the file returned by
Tcl_NameOfExecutable(3) (i.e. the executable file of the running process) is used. If the password
parameter is not empty, an obfuscated version of that password is placed between the image and ZIP
chunks of the output file and the contents of the ZIP chunk are protected with that password.

Caution: highly experimental, not usable on Android, only partially tested on Linux and Windows.

zipfs::mkkey password

For the clear text password argument an obfuscated string version is returned with the same format used
in the zipfs::mkimg command.

zipfs::mkzip outfile indir ?strip? ?password?

Creates a ZIP archive file named outfile from the contents of the input directory indir (contained regular
files only) with optional ZIP password password. While processing the files below indir the optional prefix
given in strip is stripped off the beginning of the respective file name.

Caution: the choice of the indir parameter (less the optional strip prefix) determines the later root name
of the archive's content.

zipfs::mount ?zipfile ?mountpoint? ?password?

This command mounts a ZIP archive file as a VFS. After this command executes, files contained in zipfile
will appear to Tcl to be regular files at the mount point.

With no mountpoint, returns the mount point for zipfile. With no zipfile, return all zipfile/mount point
pairs. If mountpoint is specified as an empty string, the mount point will be the current directory. If
password is specified, files from zipfile are decrypted using this password when read.

zipfs::unmount zipfile

Unmounts the mounted ZIP archive file zipfile.

The commands described above are available as subcommands in the zipfs ensemble, i.e. zipfs list is equivalent to
zipfs::list.

zipfs as Tcl (and Tk) bootstrap file system

On the Android platform zipfs is used to boot Tcl/Tk from the APK by early mounting the APK file on the file system
root as seen by Tcl. Since nearly all relevant files within the APK are below the assets folder, this lets Tcl see the
directory /assets with its library directories, e.g. the /assets/tcl8.6 directory with Tcl's library modules, encoding
tables etc. That relationship to /assets/tcl8.6 is hard coded into the Tcl shared library and based on it all other
packaged library directories can be found during Tcl initialization.

For standalone apps a similar approach is chosen by hard coding the file /assets/app/main.tcl as the file to be
sourced (if present) right after Tcl's initialization. This allows for packaging Tcl based apps as an APK, see the
description in AndroWish SDK for instructions.

On other platforms (currently tested Linux and Windows) the initial mount of an embedded ZIP file system is done on
the executable itself, e.g. if /home/john/awish is the Tcl/Tk binary with an included ZIP file system, the Tcl library
directory of the file system when mounted becomes /home/john/awish/tcl8.6. Similarly, built in application code will
be started from the file /home/john/awish/app/main.tcl if present. Additionally, the contents of the optional file
/home/john/awish/app/cmdline are appended to the command line before Tk is initialized and control is transferred to
the main.tcl script. This is useful to setup certain aspects of SDL, e.g. to start in full screen mode with or without
changed display resolution (see description of SDL startup options in Beyond AndroWish). Another hook is
/home/john/awish/app/icon.bmp which (if present) should be a Windows BMP 24 bit RGB bitmap file used as the icon
for the SDL root window.

On Windows platforms the drive letter of the base executable is prepended to the respective path names. For the
example above this means: C:\home\john\awish.exe is the binary, C:/home/john/awish.exe/tcl8.6 becomes the Tcl
library directory, C:/home/john/awish.exe/app/main.tcl is the optional application script, and so on.

	Executive Summary
	Quick Links
	Features
	borg command
	Name
	Synopsis
	Description
	Bluetooth-Related Commands
	USB-Related Commands
	Network-Related Commands
	Desktop-Related Commands
	Notification-Related Commands
	Location-Related Commands
	System-Related Commands
	Sensor-Related Commands
	Android Content (shared databases)
	Cursors from Android Content queries
	Speech Recognition
	Telephone-Related Commands
	Broadcast
	Locale
	Camera-Related Commands
	NFC Related
	OS Environment
	Shared Preferences
	General

	Events
	borg activity Examples

	The AndroWish Software Development Kit
	Prerequisites
	AndroWish SDK Setup
	Directory Structure of the SDK
	External Tools
	Start the bones Tool
	Fraction 1: Package Selection
	Fraction 2: Add App Specific Files
	Fraction 3: The App Manifest
	Fraction 3a: Set App Icons
	Fraction 4: Build Options, Code Signing
	Fraction 5: APK Building
	Fraction 5a: Installing/Running the APK
	Happy Tcl'ing

	Batteries Included
	ble command
	Name
	Synopsis
	Description
	Abbreviated UUIDs
	Event Data
	Example

	Starting point
	Build Androwish
	Get Source
	Try on Windows
	Try on OSX
	Try on CentOS 6
	OpenSuSE 13.2 64 bit
	ndk 10d install instructions (if 9d is not used as above)
	Error with ndk 10d and not with 9d (e.g. only when 10d is used)

	Customizing Androwish
	Delete not required packages
	Remove target x86
	Include own script
	Remove permissions not required for the app
	Change package name
	Start script directly
	Resources
	Remove fonts
	Release signing

	Building AndroWish
	Requirements
	Building and Running AndroWish

	dmtx command
	Name
	Synopsis
	Description

	Environment Variables
	Example Scripts And Screenshots
	jsmpeg SDL Video Driver
	Limitations of AndroWish
	modbus command
	Name
	Synopsis
	Description
	Commands

	muzic command
	Name
	Synopsis
	Description

	List of AndroWish Releases
	rfcomm command
	Name
	Synopsis
	Description

	sdltk command
	Name
	Synopsis
	Description
	Touchscreen and Accelerometer Events
	Joystick Events
	Events related to the device screen
	Events related to the app life-cycle
	Accelerometer Example
	Pinch-to-zoom Example

	snap7 command
	Name
	Synopsis
	Description
	Commands

	can command
	Name
	Synopsis
	Description
	Commands
	CAN Identifiers
	Channel Options
	Link Management
	Broadcast Manager Examples

	Test and debug strategies on AndroWish
	tkconclient
	opcua command
	Name
	Synopsis
	Description
	OPC/UA Ensemble
	Node Identifiers
	Qualified Names
	Supported Data Types
	Monitor Callbacks
	Data Source Callbacks
	Method Callbacks
	Client Object And Event Loop
	Client Example
	Server Object And Event Loop
	Server Example
	Defining Custom Data Structures

	undroidwish
	usbserial command
	Name
	Synopsis
	Description
	List of supported devices

	uvc command
	Name
	Synopsis
	Description

	v4l2 command
	Name
	Synopsis
	Description

	wmf command
	Name
	Synopsis
	Description

	zbar command
	Name
	Synopsis
	Description

	ZIPFS
	Low-level C interface
	Tcl commands
	zipfs as Tcl (and Tk) bootstrap file system

