Andr> Wish
meets

the
iIngeniously delightful
Internet . f Things

aka Bluetooth Smart, Bluetooth Low Energy, BLE

supported on Android = 4.3

rapid build-up of simple links

to communicate with sensors/actors

designed to have very low power requirements
builds on Generic Attribute Profile (GATT)

Generic Attribute Profile (GATT)

Service: collection of characteristics

Characteristic: attribute containing a single logical value
(e.g. temperature) described by zero or more descriptors

Descriptor: attribute(s) describing a characteristic

Discovery: facility to obtain a list of all services,
characteristics, and descriptors of a device

Notification: optional property of a characteristic to send
unsolicited message on data change or periodically

Scanning: detection of remote BLE devices with their
friendly (human readable) name

Generic Attribute Profile (GATT) (cont.)

* Objects (services, characteristics, descriptors) are identified by
128 bit UUIDs and carry certain meta data like read/write type,
data type, permissions etc.

e Some descriptors are predefined, e.q.

00002902-0000-1000-8000-00805F9B34FB

to enable or disable notifications by writing the 16 bit value
OX0001 or OXOO00 In little endian format, respectively.

* Arule to abbreviate UUIDs: write the first 32 bits or second 16
bits of the 128 bit UUID (00002902 or 2902 in the example

above)

android.bluetooth.BluetoothAdapter: class to deal with the local Bluetooth
interface, provides a callback for results of scanning for remote BLE devices

android.bluetooth.BluetoothDevice: represents a remote Bluetooth device
(which can be a BLE type device)

android.bluetooth.BluetoothGatt: provides the facilities to connect to and to
communicate with BLE devices

android.bluetooth.BluetoothGattService: represents a GATT service

android.bluetooth.BluetoothGattCharacteristic: represents a GATT
characteristic

android.bluetooth.BluetoothGattDescriptor: represents a GATT
descriptor

android.bluetooth.BluetoothGattCallback: an abstract class to report
GATT events back to the application

Delv.k VH

P[ﬁma—\- Tel
-.Iﬁwn, ,
ool vish LLEG o ULEClient+
X iR UG o= b
ort ke Checethsi B ;[;f “tote
: Vel By | vvid 4dle gmulfx
?g [callbadk vefs|
+ .
g callLacks l fthfﬂ ' g 3
; on Somedhing () -Trna%'#eﬁn SomeHu () 3
3 | .
¢ [§ Call 2
T _‘: —ﬁ_"“'*-. >
eventy | Ted: ble wete
vendomly 7 ‘i@

et * BL

AndroWish's ble command

e Connection setup and data exchange is event driven and asynchronous.

* Right after logical connection setup to a BLE device an automatic
discovery is performed by the Java glue in order to learn the services,
characteristics, and descriptors of the BLE device.

 In contrast to Android's android.bluetooth.* classes there's a single

callback for all types of events which receives the event type as a single
word and a dictionary with data depending on the type of the event, e.qg.

proc callback {event data} { ... }

* A read operation is asynchronous, i.e. schedules the read. Actual data is
reported in the callback.

* A write operation is asynchronous, too, i.e. the completion of the write is
reported in the callback.

ble minor commands (overview)

Minor command
abort/begin/execute

close

connect
disable/enable
disconnect/reconnect
dread/dwrite
read/write
scanner
start/stop
info/callback
userdata
getrssi

services/character -
istics/descriptors

equal/expand

Description

Handling of write transactions

Close a BLE handle (for both, connection and scanner)
Connect to a BLE device returning a connection handle
Enable and disable notifications of a characteristic
Disconnect and reconnect to BLE device

Read and write descriptors

Read and write characteristics

Obtain a BLE handle for remote device scanning

Start and stop scanning for remote devices

Obtain information on BLE handle(s)

Arbitrary user data associated with BLE handle

Get remote signal strength indication of BLE device

Obtain information on device services, characteristics and
descriptors

Operations on UUIDs

1" ble command —

et (e [(e (I 50

Rafmg
i] i B | Doy (B v A bl 4 1 b

Synopale

Dedcription
i rird o d i Gl s Bartidh L o (B | drvars T g Lo | by e e e

Tl = L b o T T —
A BT % P T T R {1, R U], e B [B T

s m eein b o S B 1 e il by o e e s]
B g e ey TV | 5, SN L, v s [e

IF W 1 i by vl el e ey W | e ety D L o e Lo el b x
wrel rebarm o b Cifwrenn e rurre | lenn Sevien n refurre

e v i

[@ik o kit

T mesn aerim, w =T D e b el ey
i

A man page for the ble command in AndroWish
can be found on

http://www.androwish.org/index.html/wiki?name=ble+command

ble command (costs)

« Java glue code (tk.tcl.wish.BLEClient)
needs about 12 kByte Java byte code

« Native code (Implementation of the ble

command in C) needs about 12 kByte machine
code (ARM) and 21 kByte machine code (x86)

» Total costs: about 45 kByte uncompressed

tabr

Steampunk: the Smart Bulb

Bluetooth

LED color bulb controlled over
Bluetooth Low Energy

CMYK color model

various built-in presets incl. “Disco”
mode

lamp is controlled by a single
characteristic consisting of about 16
byte of data

full demo available in AndroWish's
source tree as

.../assets/blel.0/demos/lumen.tcl

proc scan {event data} {
if {$event eq "scan"} {
dict with data {
if {[string match "iSmartLight*" $name]} {

found 1t, connect to 1t
ble connect $address connect_step_1
close the scanner handle
ble close $handle

. N

ble start [ble scanner scan] iﬁ

proc connect_step_1 {event data} {
if {$event eq "connection"} {
dict with data {
if {$state eq "connected"} {
connection setup magic in a write transaction
ble begin $handle
set magicl [binary format H* \
"08610766a7680f5a183e5e7a3e3chbeaa8a214b6b"]
ble write $handle FFFO 0 FFF1 0 $magicl
set magic2 [binary format H* \
"07dfd99bfddd545a183e5e7a3e3cbeaa8a214b6b"]
ble write $handle FFFO 0 FFF1 0 $magic2
ble execute $handle
ble callback $handle connect_step_2
} elseif {$state ne '"discovery"} {
fallback to scanning
ble close $handle
ble start [ble scanner scan]

proc connect_step_2 {event data} {
if {$event eq "transaction"} {
dict with data {
trigger initial read of value
ble read $handle FFFO 0 FFF1 0
ble callback $handle connected

}

} elseif {$event eq "connection"} {
dict with data {
if {$state ne "connected"} {
fallback to scanning
ble close $handle
ble start [ble scanner scan]

proc connected {event data} {
if {$event eq "characteristic"} {
dict with data {
if {[string match "*FFF1-*" $cuuid]} {
store value in handle's userdata for later
ble userdata $handle $value

}
}
} elseif {$event eq '"connection"} {
dict with data {
if {$state ne “connected”} {
fallback to scanning
ble close $handle
ble start [ble scanner scan]

proc bulb {on} {

we should have only one handle at any one time

set data [ble info [ble info]]

dict with data {

if {$state eq "connected"} {

set value {}
binary scan [ble userdata $handle] H* value
if {[string length $value] > 0} {

if {$on} { SN

set value [string replace $value 0 9 "01dfd99bb5"] };;L

} else { =

set value [string replace $value 0 1 "00"]

) @
set value [binary format H* $value] =
if {[ble write $handle FFFO 0 FFF1 0 $value]} {

trigger read back of value
ble read $handle FFFO 0 FFF1 0
done, success

return 1
} J What an embarrassment!
) } Demo failed initially for unknown reasons.
not done After many powercycles the bulb suddenly

return 0

) allowed to be remote controlled.

clock format [clock seconds] -format “%Q”

The mission: build a Tricorder

Texas Instruments CC2541 SensorTag
Development Kit

» SO0C based on 8051 MCU with
Integrated Bluetooth LE connectivity

* many sensors added on the PCB:
IR temperature, humidity, pressure,
accelerometer, gyroscope,
magnetometer

=1

e
-5uAsleep -0.9pAsleep -3pAsleep - 0.15pA sleep - 0.1pA sleep - 0.1pA sleep

- 7mA active - 135uA active - 350uA active - 300uA active - 5pA active - 240pA aclive

Source: http://processors.wiki.ti.com/index.php/SensorTag_User Guide

SensorTag UUIDs (excerpt)

Sensor

IR Temperature

Accelerometer

Humidity

Magnetometer

Barometric Pressure

Gyroscope

Buttons

UuID

AAQ1 (value)
AAOQ2 (config)

AA11 (value)
AA12 (config)

AA21 (value)
AA22 (config)

AA31 (value)
AA32 (config)

AA41 (value)
AA42 (config)

AA51 (value)
AA52 (config)

FFE1 (value)

Format

2 * 16 bit little endian
1 * 8 hit

3 * 8 bit
1* 8 bit

2 * 16 bit little endian
1 * 8 hit

3 * 16 hit little endian
1 * 8 hit

2 * 16 bit little endian
1 * 8 hit

3 * 16 hit little endian
1 * 8 hit

1 * 8 bit

Snippet shows how ble enable commands for characteristics having notification property
are accumulated during discovery.

charééferistic {
if {($state eq "discovery") && ($properties & 0x10)} {
set cmds [ble userdata $handle]

lappend cmds [list ble enable $handle $suuid $sinstance $cuuid $cinstance]

ble userdata $handle $cmds

Most sensors need to be enabled explicitly by writing sensor dependent commands in a

configuration characteristic.

connection {
if {$state eq "connected"} { ;# enable all notifications
set cmds [ble userdata $handle]
if {$cmds ne {}} {

set cmd [lindex $cmds 0] ; set cmds [lrange $cmds 1 end] ; {*}$cmd
Add commands to turn various sensors on. Barometer needs two configurations
to load its calibration. Gyroscope has a bitmask for various axes.
set onl [binary format H* "01"]
set on2 [binary format H* "02"]
set on7 [binary format H* "@7"]
foreach {suuid cuuid on} { AAGO AA02 onl AA10 AA12 onl AA20 AA22 onl
AA30 AA32 onl AA40 AA42 on2 AA50 AA52 on7 AA40 AA42 onl } {
lappend cmds [list ble write $handle $suuid 0 $cuuid O [set $on]]

Read barometer calibration.
lappend cmds [list ble read $handle AA40 0 AA43 0]
ble userdata $handle $cmds

Process sensor value

Snippet shows how the magnetic field sensor value is converted.

switch -glob $cuuid {
FOOOAA31-* {
set x 0
set y 0
set z O
binary scan $value s1slisl X y z
set ::sensortag(magnetic_x) \
[format "%.5f" [expr {0-$x*2000.0/65536.0}]]
set ::sensortag(magnetic_y) \
[format "%.5f" [expr {0-$y*2000.0/65536.0}]]
set ::sensortag(magnetic_z) \
[format "%.5f" [expr {$z*2000.0/65536.0}]]

Full demo available in AndroWish's source tree as

.../assets/blel.0/demos/tricorder.tcl

Thank you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

