
Andr Wish
meets

the
ingeniously delightful

Internet f Things

Bluetooth 4.0

● aka Bluetooth Smart, Bluetooth Low Energy, BLE

● supported on Android ≥ 4.3

● rapid build-up of simple links

● to communicate with sensors/actors

● designed to have very low power requirements

● builds on Generic Attribute Profile (GATT)

Generic Attribute Profile (GATT)

● Service: collection of characteristics
● Characteristic: attribute containing a single logical value

(e.g. temperature) described by zero or more descriptors
● Descriptor: attribute(s) describing a characteristic
● Discovery: facility to obtain a list of all services,

characteristics, and descriptors of a device
● Notification: optional property of a characteristic to send

unsolicited message on data change or periodically
● Scanning: detection of remote BLE devices with their

friendly (human readable) name

Generic Attribute Profile (GATT) (cont.)

● Objects (services, characteristics, descriptors) are identified by
128 bit UUIDs and carry certain meta data like read/write type,
data type, permissions etc.

● Some descriptors are predefined, e.g.

00002902-0000-1000-8000-00805F9B34FB

to enable or disable notifications by writing the 16 bit value
0x0001 or 0x0000 in little endian format, respectively.

● A rule to abbreviate UUIDs: write the first 32 bits or second 16
bits of the 128 bit UUID (00002902 or 2902 in the example
above)

Android BLE framework

● android.bluetooth.BluetoothAdapter: class to deal with the local Bluetooth
interface, provides a callback for results of scanning for remote BLE devices

● android.bluetooth.BluetoothDevice: represents a remote Bluetooth device
(which can be a BLE type device)

● android.bluetooth.BluetoothGatt: provides the facilities to connect to and to
communicate with BLE devices

● android.bluetooth.BluetoothGattService: represents a GATT service

● android.bluetooth.BluetoothGattCharacteristic: represents a GATT
characteristic

● android.bluetooth.BluetoothGattDescriptor: represents a GATT
descriptor

● android.bluetooth.BluetoothGattCallback: an abstract class to report
GATT events back to the application

AndroWish's ble command

AndroWish's ble command

● Connection setup and data exchange is event driven and asynchronous.
● Right after logical connection setup to a BLE device an automatic

discovery is performed by the Java glue in order to learn the services,
characteristics, and descriptors of the BLE device.

● In contrast to Android's android.bluetooth.* classes there's a single
callback for all types of events which receives the event type as a single
word and a dictionary with data depending on the type of the event, e.g.

 proc callback {event data} { ... }

● A read operation is asynchronous, i.e. schedules the read. Actual data is
reported in the callback.

● A write operation is asynchronous, too, i.e. the completion of the write is
reported in the callback.

ble minor commands (overview)

Minor command Description

abort/begin/execute Handling of write transactions

close Close a BLE handle (for both, connection and scanner)

connect Connect to a BLE device returning a connection handle

disable/enable Enable and disable notifications of a characteristic

disconnect/reconnect Disconnect and reconnect to BLE device

dread/dwrite Read and write descriptors

read/write Read and write characteristics

scanner Obtain a BLE handle for remote device scanning

start/stop Start and stop scanning for remote devices

info/callback Obtain information on BLE handle(s)

userdata Arbitrary user data associated with BLE handle

getrssi Get remote signal strength indication of BLE device

services/character-
istics/descriptors

Obtain information on device services, characteristics and
descriptors

equal/expand Operations on UUIDs

ble command (documentation)

A man page for the ble command in AndroWish
can be found on
http://www.androwish.org/index.html/wiki?name=ble+command

ble command (costs)

● Java glue code (tk.tcl.wish.BLEClient)
needs about 12 kByte Java byte code

● Native code (implementation of the ble
command in C) needs about 12 kByte machine
code (ARM) and 21 kByte machine code (x86)

● Total costs: about 45 kByte uncompressed

Steampunk: the Smart Bulb

● LED color bulb controlled over
Bluetooth Low Energy

● CMYK color model
● various built-in presets incl. “Disco”

mode
● lamp is controlled by a single

characteristic consisting of about 16
byte of data

● full demo available in AndroWish's
source tree as

.../assets/ble1.0/demos/lumen.tcl

Detect the bulb

proc scan {event data} {
 if {$event eq "scan"} {
 dict with data {
 if {[string match "iSmartLight*" $name]} {
 # found it, connect to it
 ble connect $address connect_step_1
 # close the scanner handle
 ble close $handle
 }

 }

 }

}

ble start [ble scanner scan]

Connect the bulb (step 1)

proc connect_step_1 {event data} {
 if {$event eq "connection"} {
 dict with data {
 if {$state eq "connected"} {
 # connection setup magic in a write transaction
 ble begin $handle
 set magic1 [binary format H* \
 "08610766a7680f5a183e5e7a3e3cbeaa8a214b6b"]
 ble write $handle FFF0 0 FFF1 0 $magic1
 set magic2 [binary format H* \
 "07dfd99bfddd545a183e5e7a3e3cbeaa8a214b6b"]
 ble write $handle FFF0 0 FFF1 0 $magic2
 ble execute $handle
 ble callback $handle connect_step_2
 } elseif {$state ne "discovery"} {
 # fallback to scanning
 ble close $handle
 ble start [ble scanner scan]
 }
 }
 }
}

Connect the bulb (step 2)

proc connect_step_2 {event data} {
 if {$event eq "transaction"} {
 dict with data {
 # trigger initial read of value
 ble read $handle FFF0 0 FFF1 0
 ble callback $handle connected
 }
 } elseif {$event eq "connection"} {
 dict with data {
 if {$state ne "connected"} {
 # fallback to scanning
 ble close $handle
 ble start [ble scanner scan]
 }
 }
 }
}

Callback when connected

proc connected {event data} {
 if {$event eq "characteristic"} {
 dict with data {
 if {[string match "*FFF1-*" $cuuid]} {
 # store value in handle's userdata for later
 ble userdata $handle $value
 }
 }
 } elseif {$event eq "connection"} {
 dict with data {
 if {$state ne “connected”} {
 # fallback to scanning
 ble close $handle
 ble start [ble scanner scan]
 }
 }
 }
}

Turn the bulb on or off

proc bulb {on} {
 # we should have only one handle at any one time
 set data [ble info [ble info]]
 dict with data {
 if {$state eq "connected"} {
 set value {}
 binary scan [ble userdata $handle] H* value
 if {[string length $value] > 0} {
 if {$on} {
 set value [string replace $value 0 9 "01dfd99bb5"]
 } else {
 set value [string replace $value 0 1 "00"]
 }
 set value [binary format H* $value]
 if {[ble write $handle FFF0 0 FFF1 0 $value]} {
 # trigger read back of value
 ble read $handle FFF0 0 FFF1 0
 # done, success
 return 1
 }
 }
 }
 }
 # not done
 return 0
}

What an embarrassment!
Demo failed initially for unknown reasons.
After many powercycles the bulb suddenly
allowed to be remote controlled.

clock format [clock seconds] -format “%Q”

The mission: build a Tricorder

Tricorder sensor component

Texas Instruments CC2541 SensorTag
Development Kit
● SoC based on 8051 MCU with

integrated Bluetooth LE connectivity
● many sensors added on the PCB:

IR temperature, humidity, pressure,
accelerometer, gyroscope,
magnetometer

SensorTag block diagram

Source: http://processors.wiki.ti.com/index.php/SensorTag_User_Guide

SensorTag UUIDs (excerpt)

Sensor UUID Format

IR Temperature AA01 (value)
AA02 (config)

2 * 16 bit little endian
1 * 8 bit

Accelerometer AA11 (value)
AA12 (config)

3 * 8 bit
1 * 8 bit

Humidity AA21 (value)
AA22 (config)

2 * 16 bit little endian
1 * 8 bit

Magnetometer AA31 (value)
AA32 (config)

3 * 16 bit little endian
1 * 8 bit

Barometric Pressure AA41 (value)
AA42 (config)

2 * 16 bit little endian
1 * 8 bit

Gyroscope AA51 (value)
AA52 (config)

3 * 16 bit little endian
1 * 8 bit

Buttons FFE1 (value) 1 * 8 bit

Enabling sensors and notifications

Snippet shows how ble enable commands for characteristics having notification property
are accumulated during discovery.
 ...
characteristic {
 if {($state eq "discovery") && ($properties & 0x10)} {
 set cmds [ble userdata $handle]
 lappend cmds [list ble enable $handle $suuid $sinstance $cuuid $cinstance]
 ble userdata $handle $cmds
 }
 ...

Most sensors need to be enabled explicitly by writing sensor dependent commands in a
configuration characteristic.
 ...
connection {
 if {$state eq "connected"} { ;# enable all notifications
 set cmds [ble userdata $handle]
 if {$cmds ne {}} {
 set cmd [lindex $cmds 0] ; set cmds [lrange $cmds 1 end] ; {*}$cmd
 # Add commands to turn various sensors on. Barometer needs two configurations
 # to load its calibration. Gyroscope has a bitmask for various axes.
 set on1 [binary format H* "01"]
 set on2 [binary format H* "02"]
 set on7 [binary format H* "07"]
 foreach {suuid cuuid on} { AA00 AA02 on1 AA10 AA12 on1 AA20 AA22 on1
 AA30 AA32 on1 AA40 AA42 on2 AA50 AA52 on7 AA40 AA42 on1 } {
 lappend cmds [list ble write $handle $suuid 0 $cuuid 0 [set $on]]
 }
 # Read barometer calibration.
 lappend cmds [list ble read $handle AA40 0 AA43 0]
 ble userdata $handle $cmds
 }
 }
 ...

Process sensor value

Snippet shows how the magnetic field sensor value is converted.

 ...
switch -glob $cuuid {
 F000AA31-* {
 set x 0
 set y 0
 set z 0
 binary scan $value s1s1s1 x y z
 set ::sensortag(magnetic_x) \
 [format "%.5f" [expr {0-$x*2000.0/65536.0}]]
 set ::sensortag(magnetic_y) \
 [format "%.5f" [expr {0-$y*2000.0/65536.0}]]
 set ::sensortag(magnetic_z) \
 [format "%.5f" [expr {$z*2000.0/65536.0}]]
 }
 ...

Full demo available in AndroWish's source tree as

 .../assets/ble1.0/demos/tricorder.tcl

Thank you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

