
AndroWish – 963 days later

the Bad,

the Ugly.

the Good,

and

 or

borg camera ...

● Tcl interface to deal with
android.hardware.camera

● Capture images into Tk photo
images since this is the most universal format

● Operations to start and stop continuous capture
for live video display

● Operation to take a real photo with higher resolution in JPEG format
● Report availability of a new captured (live) image by virtual event
<<ImageCapture>> to toplevel windows

● Report availability of a captured JPEG image by virtual event
<<PictureTaken>>

● Facility to control properties/parameters of the camera(s)

borg camera commands (overview)

Minor command Description

close Close currently open camera

current Return index of currently open camera (usually 0=rear, 1=front)

grayimage Retrieve last captured image in gray scale

image Retrieve last captured image in RGB

info Retrieve current camera orientation relative to screen

jpeg Retrieve last captured image as JPEG byte array

mirror Flip captured image horizontally and/or vertically

numcameras Return number of cameras

open Open camera given index (usually 0=rear, 1=front)

orientation Rotate captured image by 0, 90, 180, or 270 degrees

parameters Get and/or set camera parameters (e.g. image size)

start Start image capture

stop Stop image capture

takejpeg Initiate capture of a JPEG image (with higher resolution)

borg camera (a small Webcam #1)

proc init {} {

 image create photo img -width 640 -height 480

 borg camera open

 borg camera parameters preview-size 640x480 \

 picture-size 640x480 jpeg-quality 80

 bind . <<ImageCapture>> {

 borg camera image img

 }

 borg camera start

 pack [label .label -image img]

 socket -server request 8080

}

borg camera (a small Webcam #2)

proc request {sock args} {

 chan configure $sock -translation binary -blocking 0 \

 -buffering none

 after 100

 catch {chan read $sock 1000} err

 chan configure $sock -blocking 1

 if {![borg camera takejpeg]} {

 chan close $sock

 return

 }

 bind . <<PictureTaken>> [list send_jpeg $sock]

 chan puts -nonewline $sock "HTTP/1.0 200 OK\r\n”

 chan puts -nonewline $sock \

 “Connection: close\r\nContent-Type: image/jpeg\r\n\r\n"

}

borg camera (a small Webcam #3)

proc send_jpeg {sock} {

 bind . <<PictureTaken>> {}

 catch {

 chan puts -nonewline $sock [borg camera jpeg]

 }

 catch {chan close $sock}

 borg camera start

}

init

zbar/dmtx commands

● Decode barcodes, QR codes etc.
from photo images or byte arrays

● If the Tcl core supports threads, decode
process can be carried out asynchronous,
i.e. in the background using true concurrency

Examples:

zbar decode nameOfPhotoImage

returns a list of number of milliseconds for decoding, symbology literal, and result as byte
array

zbar async_decode nameOfPhotoImage callback

carries out decoding asynchronously and invokes callback with arguments like in the
synchronous example above

zbar/dmtx commands

Documentation on www.androwish.org:

dmtx command

zbar command

Examples:

androwish:///assets/dmtx0.1/demos/android_demo%2Etcl

androwish:///assets/zbar0.1/demos/android_demo%2Etcl

These links would work on an Android tablet, if this
document were HTML and viewed in Firefox or Chrome

Unfortunely, the implementations of both
commands don't have a TEA build infrastructure yet.

http://www.androwish.org/index.html/wiki?name=dmtx+command
http://www.androwish.org/index.html/wiki?name=zbar+command
androwish:///assets/dmtx0.1/demos/android_demo%2Etcl
androwish:///assets/zbar0.1/demos/android_demo%2Etcl

Emojis (Unicode 8.0)

package require tkpath

pack [::tkp::canvas .c -width 400 -height 400 -background white]

.c create ptext 200 200 -fontfamily Symbola -fontsize 70 \
 -fill gray70 -stroke black -strokewidth 1 -textanchor c \
 -text "\U1F601\U1F602\U1F603\n\U1F604\U1F605\U1F606\n\U1F607\U1F608\U1F609"

● Inspired by Jan Nijtman's Unicode 8.0 presentation at EuroTCL 2015
● Currently, two approaches are possible in Tcl core
● TCL_UTF_MAX=4: Tcl_UniChar is a 16 bit data type, codepoints

beyond BMP are expressed as surrogate pairs
● TCL_UTF_MAX=6: Tcl_UniChar is a 32 bit data type, all codepoints

correspond to a single Tcl_UniChar
● AndroWish chose TCL_UTF_MAX=6 since this fits font rendering

with AGG/freetype which take 32 bit codepoints

Emojis, things to consider

● AndroWish might work with TCL_UTF_MAX=4, but this is
untested

● On Win32 many OS interfaces use the WCHAR data type (16 bit)
thus an additional/another translation has to take place when
dealing with the OS

● Text input on both Android (SDL2) and Win32 translate key
events to 16 bit quantities with surrogate pairs

● Text input in X11 and MacOSX is still terra incognita and needs
further investigation

● Font mapping in Tk/SDL, Tk/WIN32, and Tk/X11 (Xlib, not Xft) is
memory hungry regarding subfonts

● Need for a comparison of run-time costs of TCL_UTF_MAX=6 vs.
TCL_UTF_MAX=4

tkpath and pdf4tcl

● With René Zaumseil's help: tkpath items output PDF
primitives directly to pdf4tcl, conventional canvas items
still use the pdf4tcl approach

● pdf4tcl now has additional interfaces for tkpath (for text
output, image objects, extended graphics states)

● tkpath PDF generation calls into pdf4tcl
● Almost all tkpath item properties implemented, i.e. alpha

transparency, gradient fills, images with tinting
● Unfinished: text/font w.r.t. encodings, rendering, and font

substitution, but basic Latin 1 with standard fonts works
● Unfinished: repeating gradient fills

undroidwish

AndroWish sans the borg – a project just for pun

Wishful thinking for underdogs

undroidwish

AndroWish sans the borg – a project just for pun

Wishful thinking for underdogs

undroidwish (making of)

AndroidWish
source tree

shell script

configure, make
compile, link, zip

EXE ZIP

self contained Tcl/Tk environment

≈ 5MB ≈ 15MB

Tcl, Tk, SDL2,
AGG, freetype
statically linked

extension DLLs,
Tcl libraries and
support files

undroidwish

● AndroWish source tree plus few extras

● Renders like AndroWish using SDL2/AGG/freetype

● Unicode 8.0 enabled (using TCL_UTF_MAX=6 like AndroWish)

● Shell script to control configure/make/install

● For Linux target: standard compiler (gcc)

● For Win32/64 targets: MinGW64 cross compiler

● As in AndroWish many packages and extensions are built in

● Binary undroidwish{,.exe} is self contained

● No installation required, all packages and extensions in ZIPFS

● Alternative build using native windowing system (X11 or GDI)
available (called vanillawish{,.exe})

undroidwish, DLL hell avoidance etc.

● undroidwish (i.e. the Tcl/Tk executable part) are compiled and
linked statically

● C++ code can introduce dependencies on libstdc++,
fortunately, AGG can avoid this by using a custom memory
allocator based on Tcl_Alloc() instead of new

● MinGW64 relies on MSVCRT only, thus Win32
undroidwish'es should work on Windows XP or newer

● For Linux, use a distro with older glibc for building, e.g.
RHEL/CentOS 5, this allows to generate binaries which run
on most Linuxen of the last 8 years

● Where more recent (read unsupported on older systems)
DLLs are required, use runtime linking like Tcl_LoadFile()

undroidwish, continued

Documentation (rudimentary)

http://www.androwish.org/index.html/wiki?name=undroidwish

List of packaged extensions and libraries

http://www.androwish.org/index.html/wiki?name=Batteries+Included

Downloads of pre-built undroidwish'es for Windows and Linux

http://www.androwish.org/download/index.html

http://www.androwish.org/index.html/wiki?name=undroidwish
http://www.androwish.org/index.html/wiki?name=Batteries+Included
http://www.androwish.org/download/index.html

TWAPI in undroidwish

● Emmanuel Frécon: Wouldn't it be nice to have TWAPI
in undroidwish?

● Tcl Windows API: a nontrivial Windows specific
extension originally requiring MSVC tools for building

● Now available in Win32/64 undroidwish'es
● Built using MinGW64 cross compiler into a single DLL
● Ashok P. Nadkarni added support for Unicode 8.0

based on TCL_UTF_MAX=6 in a few days (big thank
you!)

● WITS (Windows Inspection Tool Set) included

v4l2 (and tcluvc)

● “Video for Linux 2” Tcl interface to video devices, e.g. webcams
● Tcl command very similar to “borg camera...”

● tcluvc similar to v4l2, interface to UVC type USB cameras (still early alpha
state)

● v4l2 devices returns list of video devices from /dev directory or udev
information

● v4l2 listen... establishes callback which is triggered by udev when
USB cameras are plugged/unplugged

● v4l2 open... opens a video devices and establishes a callback to be
invoked when an image was captured

● In the callback v4l2 image... transfers the captured image into a normal
Tk photo image

● Images are captured and converted to RGB thanks to libv4l2 and its built in
converters

tclwmf (WIP)

● Tcl interface to Windows Media Framework to use video
capture devices, e.g. webcams

● Tcl command very similar to “v4l2...”

● wmf devices returns list of video devices pair wise as
symbolic link (WMF terminology) and friendly name

● wmf open... opens a video device given symbolic link name
and establishes a callback to be invoked when an image was
captured

● In the callback wmf image... transfers the captured image
into a normal Tk photo image

● Images are captured in NV12 or YUY2 format and internally
converted to RGB for Tk_PhotoPutBlock()

Questions?

